PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected Tools For Wind Farm Output Daily-Hourly Forecasting For The Wholesale Market

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wybrane narzędzia do prognozowania dobowo-godzinowego energii elektrycznej wytwarzanej przez elektrownie wiatrowe na potrzeby rynku hurtowego
Języki publikacji
EN PL
Abstrakty
EN
Owners of generating sources after their connection to the power grid become participants of the electricity market, including the balancing market. From that moment on, each participant is obliged to forecast their own generating units' output with a specified advance time. The adopted energy transformation policy removes investment restrictions, in particular concerning the so-called distance act (10H), which stopped the dynamic development of this technology on land. This approach will contribute to the construction of more wind farms. The greater the number of generation sources dependent on weather conditions, the more difficult their predictability and the greater the risk of trade imbalances in participants ' purchasing portfolios. Every incorrect energy forecast that differs from the actual output will result in higher costs of participation in the market. Effective output forecasting allows companies to reduce the cost of their participation. This paper presents a method of forecasting wind farm output using artificial neural networks, which can be an alternative tool for analytical and statistical models. This paper aims to evaluate the effectiveness of the farm output forecast model, i.e. the output modelling for specific weather conditions. The paper presents the farm output affecting factors that should be included in the model, and it shows that the neural network can reproduce farm output curves similar to the catalogue curves with consideration of the object's characteristics. The author has exhaustively researched the subject for 10 years, reaching the main conclusion that it is impossible to create one universal forecast model for every farm. This means that each such facility requires an individual approach to obtain an effective forecast. The changing market environment requires further action and the development of new models suitable for the needs of the markets within a shorter time horizon.
PL
Właściciele źródeł wytwórczych po przyłączeniu do sieci elektroenergetycznej stają się uczestnikami rynku energii elektrycznej, w tym rynku bilansującego. Od tego momentu każdy uczestnik zobowiązany jest do prognozowania produkcji energii własnych jednostek wytwórczych z określonym wyprzedzeniem czasowym. Przyjęta polityka transformacji energetycznej znosi ograniczenia inwestycyjne, w szczególności w zakresie tzw. ustawy odległościowej (10H), która wstrzymała dynamiczny rozwój tej technologii na lądzie. Takie podejście przyczyni się do budowy kolejnych elektrowni wiatrowych. Im większa będzie liczba źródeł wytwórczych, których produkcja zależy od warunków pogodowych, tym trudniejsza będzie ich przewidywalność i większe ryzyko niezbilansowania handlowego portfeli zakupowych uczestników. Każda błędna prognoza energii, różniąca się od rzeczywistej produkcji, będzie skutkowała większymi kosztami uczestnictwa w rynku. Skuteczne prognozowanie produkcji energii umożliwia przedsiębiorstwom redukcję kosztów ich uczestnictwa. Artykuł prezentuje metodę prognozowania energii farmy wiatrowej za pomocą sztucznych sieci neuronowych, które mogą stanowić alternatywne narzędzie względem modeli analitycznych i statystycznych. Celem artykułu była ocena skuteczności modelu prognozy energii farmy, czyli modelu odtwarzającego moc farmy dla określonych warunków meteorologicznych. W artykule przedstawiono czynniki wpływające na moc farmy, które należy uwzględnić w modelu, a także wykazano, że sieć neuronowa potrafi odtworzyć krzywe mocy farmy zbliżone do krzywych katalogowych z uwzględnieniem cech charakterystycznych obiektu. Autor przez 10 lat wyczerpał temat, dochodząc do głównego wniosku, że nie można stworzyć jednego uniwersalnego modelu prognozy dla każdej farmy. Oznacza to, że każdy tego typu obiekt wymaga indywidualnego podejścia, aby uzyskać skuteczną prognozę. Zmieniające się otoczenie rynkowe wymaga dalszych działań i opracowania nowych modeli sprawdzających się w krótszym horyzoncie czasowym na potrzeby rynków.
Wydawca
Czasopismo
Rocznik
Tom
Strony
36--45
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Energa Obrót SA of ORLEN Group
Bibliografia
  • 1. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, OJ L 140, 5.6.2009, pp. 16–62
  • 2. Rząd pracuje nad zmianą zasady 10H. Co zaproponuje? [The government is working on amending the 10H rule. What will it propose?] [online], https://www.gramwzielone.pl/energia-wiatrowa/103511/rzad-pracuje-nad-zmiana-zasady-10h-co-zaproponuje [access: 30.07.2020].
  • 3. Flores J.J., Graff M., Rodriguez H., Evolutive design of ARMA and ANN models for time series forecasting, Renewable Energy, Vol. 44, 2012, pp. 225–230.
  • 4. Soman S.S. et al., A review of wind power and wind speed forecasting methods with different time horizons, North American Power Symposium (NAPS), 2010, IEEE Xplore [online], https://www.researchgate.net/publication/224188805_A_review_of_wind_power_and_wind_speed_forecasting_methods_with_different_time_horizons [access: 28.10.2020].
  • 5. Jursa R., Wind power prediction with different artificial intelligence models [online], https://www.researchgate.net/publication/228964192_Wind_power_prediction_with_different_artificial_intelligence_models [access: 28.10.2020].
  • 6. Sveinbjornsson S., Analysis of WasP (Wind Atlas Analysis and Application Program) in complex topographical conditions using measured production from a large scale wind farm, A thesis submitted in partial fulfillment of the requirements for the degree, Department of Civil and Environmental Engineering, University of Washington 2013.
  • 7. Zeng J., Qiao W., Support Vector Machine-Based Short-Term Wind Power Forecasting [online], https://core.ac.uk/download/pdf/189669024.pdf [access: 28.10.2020].
  • 8. Wind Energy Division, Risø DTU, www.wasp.dk, http://www.risoe.dtu.dk.
  • 9. EMD International A/S [online], www.emd.dk/WindPRO [access: 28.10.2020].
  • 10. RETScreen International [online], www.retscreen.net [access: 28.10.2020].
  • 11. Rubanowicz T., Metody predykcji produkcji mocy parku wiatrowego [Wind farm output prediction methods] Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, No. 25, 2008, pp. 145–149.
  • 12. Rubanowicz T., Bogalecka E., Ocena charakterystyki mocy parku wiatrowego [Wind farm power characteristics evaluation], PES7, VII Ogólnopolska Konferencja Naukowo-Techniczna PTETiS, Kościelisko 22–26.06.2009.
  • 13. Rubanowicz T., Bogalecka E., Analiza charakterystyk parku wiatrowego [Wind farm characteristics analysis], Wiadomości Elektrotechniczne, No. 2, 2010, pp. 15–20.
  • 14. Rubanowicz T., Bogalecka E., Neuronowy model mocy farmy wiatrowej [Neural model of wind farm power], Mechanik, No. 7, 2010, pp. 579–586.
  • 15. Rubanowicz T., Bogalecka E., Modele farmy wiatrowej na potrzeby prognozowania mocy [Wind farm models for power output forecasting] , X Krajowa Konferencja Naukowa SENE, Łódź 2011.
  • 16. Rubanowicz T., Bogalecka E., Model fizykalny – czy neuronowy? – narzędzia do predykcji mocy wytwarzanej przez elektrownie wiatrowe [Physical – or neural model? – tools for wind farm output prediction], XVI Międzynarodowa Szkoła Komputerowego Wspomagania Projektowania, Wytwarzania i Eksploatacji, Jurata 2012.
  • 17. Rubanowicz T., Budowa modelu prognostycznego farmy wiatrowej w środowisku MATLAB [Building a wind farm forecast model in the MATLAB environment], XXII Seminarium Zastosowanie Komputerów w Nauce i Technice, Oddział Gdański PTETiS, Gdańsk 2012.
  • 18. Landberg L., Short-term prediction of the power production from wind farms, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 80, No. 1–2, 1999, pp. 207–220.
  • 19. Barbero A., Lopez J., Dorronsoro J.R., Kernel methods for wide area wind power forecasting [online], https://repositorio.uam.es/handle/10486/665710 [access: 28.10.2020].
  • 20. Nielsen T.S., Online prediction and control in nonlinear stochastic systems, Technical University of Denmark, Ph.D. Thesis No. 84, 2002 [online], http://www2.imm.dtu.dk/pubdb/edoc/imm792.pdf [access: 30.10.2020].
  • 21. Saint-Drenan Y-M., Wind power predictions analysis, part 2, Economical analysis, ECN-I–02-011 (2002).
  • 22. Rubanowicz T., Bogalecka E., Warunki wiatrowe na rozległej farmie wiatrowej [Wind conditions on an extensive wind farm], Mechanik, No. 7, 2011, pp. 29–36.
  • 23. Monteiro C. et al., Wind power forecasting: State-of-the-Art 2009, Decision and Information Sciences Division, ANL/DIS-10-1, Argonne National Laboratory 2009.
  • 24. Holttinen H., Optimal electricity market for wind power, Energy Policy, Vol. 33, 2005, pp. 2052–2063.
  • 25. Waldl I., Kariniotakis G.N., The Anemos wind power forecasting platform technology – techniques and experiences, EWEC 2006.
  • 26. Parkers J., Tindal A., Forecasting Short Term Wind Farm Production in Complex Terrain, Garrard Hassan and Partners Ltd [online], www.gl-garradhassan.com [access: 30.07.2020].
  • 27. Lichota A., Prognozowanie krótkoterminowe na lokalnym rynku energii elektrycznej [Short-term forecasting on the local electricity market], doctoral dissertation, AGH University of Science and Technology, Kraków 2006.
  • 28. Centrum Informacji o Rynku Energii [online], www.cire.pl [access: 30.07.2020].
  • 29. Rubanowicz T., Prognozowanie mocy wytwórczej farmy wiatrowej [Forecasting wind farm generation capacity], doctoral dissertation, Gdańsk University of Technology, Gdańsk 2019.
  • 30. TSO notice of 21 May 2020 [online] https://www.pse.pl/-/spotkanie-informacyjne-dotyczace-zmian-zasad-funkcjonowania-rynku-bilansujacego [access: 30.07.2020].
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
2. Wersja polska na stronach 46-56.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db44df50-06ea-461e-9762-9d344df03f11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.