PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the effect of grain size on longitudinal critically refracted ultrasonic wave time-of-flight and speed of penetration in material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This examination investigates the governance of grain size on the Time-of-Flight (TOF) and speed of longitudinal critically refracted (LCR) waves in metallic materials. LCR waves are pivotal in non-destructive assessment and material characterization due to their sensitivity to microstructural variations. We conducted experiments on typical varying grain sizes and analyzed the propagation of LCR waves. The grain size of material changes when subjected to mechanical and thermal operations. In the present study the specimens of as received material cut to 100 X 50 X 8 mm dimensions. The prepared specimens first stress relieved and then subjected to the heat treatments at a temperature 440 0C, 480 0C, 500 0C, 540 0C, and 560 0C for 30 minute in vacuum furnace respectively. The TOF and speed of LCR wave measured with ultrasonic instrument and 5 MHz frequency transducers. The grain dimensions and the grain structure changes with the heat treatments. At 560 0C temperature the grains became courser and the size of the grains increased to 150µm. The grains get elongated at 500 0C and 540 0C temperature with equiaxed grains structure. The grain size of the specimens heated at 500 0C and 540 0C temperature measured as 84µm and 100µm respectively. The LCR wave speed and TOF established a linear relation with grain size effect. The LCR wave TOF and grain dimensions established negative relation, The LCR TOF smaller at higher grain size and higher at lower grain size. The LCR wave speed and grain dimensions established positive relation, with rise in grain size LCR wave speed increases and at lower grain size the LCR wave speed observed smaller. The change in ±10µm grain size changes the TOF and speed wave by ∓ 0.0005µsec and ±0.2411m/s respectively. The measurements of TOF and speed of LCR wave performed with uncertainty ± 0.000029 and ± 0.010 respectively. Our results indicate a significant correlation between grain size and both TOF and wave speed, highlighting the importance of considering grain size in ultrasonic testing and material evaluation.
Twórcy
  • Mechanical Engineering Department, School of Engineering, Management and Research, D. Y. Patil International University, Pune, Maharashtra, 411044, India
  • Mechanical Engineering Department, School of Engineering, Management and Research, D. Y. Patil International University, Pune, Maharashtra, 411044, India
autor
  • Mechanical Engineering Department, School of Engineering, Management and Research, D. Y. Patil International University, Pune, Maharashtra, 411044, India
  • Mechanical Engineering Department, School of Engineering, Management and Research, D. Y. Patil International University, Pune, Maharashtra, 411044, India
  • Mechanical Engineering Department, School of Engineering, Management and Research, D. Y. Patil International University, Pune, Maharashtra, 411044, India
Bibliografia
  • 1. Hirsekorn S. The scattering of ultrasonic waves by polycrystals. The Journal of the Acoustical Society of America. 1982; 72(3), 1021–1031. doi: https://doi.org/10.1121/1.388233.
  • 2. Dive V., Lakade S. Characterization of ultrasonic LCR wave penetration in materials with finite element simulation. AIP Conf. Proc. 21 March 2024; 3013(1): 020011. doi: https://doi.org/10.1063/5.0202059.
  • 3. Palanichamy P., Joseph A., Jayakumar T., Raj B. Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel. NDT & E International. 1995; 28(3), 179–185. doi: https://doi.org/10.1016/0963-8695(95)00011-L.
  • 4. Hull J.B., Langton C.M., Barker S., Jones A.R. Identification and characterisation of materials by broadband ultrasonic attenuation analysis. Journal of Materials Processing Technology. 1996; 56(1–4), 148–157. doi: https://doi.org/10.1016/0924-0136(96)85100-4.
  • 5. Vikas D., Lakade S. Microstructure and microhardness investigation of non-weldable AA7075-T651 alloy with gas tungsten arc welding. International Review of Mechanical Engineering. 2022; 6(16), 265–276. doi: https://doi.org/10.15866/ireme.v16i6.21905.
  • 6. Ahn B., Lee S.S., Hong S.T., Kim H.C., Kang S.J.L. Application of the acoustic resonance method to evaluate the grain size of low carbon steels. NDT & E International. 1999; 32(2), 85–89.
  • 7. Botvina L.R., Fradkin L.J., Bridge B. A new method for assessing the mean grain size of polycrystalline materials using ultrasonic NDE. Journal of Materials Science. 2000; 35, 4673–4683. doi: https://doi.org/10.1023/A:1004890604013.
  • 8. Walaszek H., Hoblos J., Bourse G., Robin C. Effect of microstructure on ultrasonic measurements of residual stresses in welded joints. Material Science Forum. 2002; 404–407, 875–880. doi: https://doi.org/10.4028/www.scientific.net/msf.404-407.875.
  • 9. Kolsky H. The propagation of stress waves in solids. Journal of Sound and Vibration. 1966; 1(1), 88–110. doi: https://doi.org/10.1016/0022-460X(64)90008-2.
  • 10. Papadakis E. P. Ultrasonic attenuation caused by scattering in polycrystalline metals. Journal of Applied Physics. 36(9), 2595–2600. doi: https://doi.org/10.1121/1.1909401.
  • 11. Vikas D., Sanjay L. Recent research progress on residual stress measurement using non-destructive testing. Materials Today: Proceedings. 2021; 47(11), 3282–3287. doi: https://doi.org/10.1016/j.matpr.2021.07.094.
  • 12. Rose J.L. Ultrasonic Waves in Solid Media. Cambridge University Press. 1999.
  • 13. Scalea F.L. Ultrasonic guided waves for nondestructive testing. Journal of Nondestructive Evaluation. 2004; 23(3), 123–134.
  • 14. Ahn B., Lee S.S. Effect of microstructure of low carbon steels on ultrasonic attenuation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2000; 47(3), 620–629. doi: https://doi.org/10.1109/58.842049.
  • 15. Choi S., Ryu J., Kim J.S., Jhang K.Y. Comparison of linear and nonlinear ultrasonic parameters in characterizing grain size and mechanical properties of 304L stainless steel. Metals. 2019; 9(12), 1279. doi: https://doi.org/10.3390/met9121279.
  • 16. Wan T., Naoe T., Wakui T., Futakawa M., Obayashi H., Sasa T. Effects of grain size on ultrasonic attenuation in type 316L stainless steel. Materials. 2017; 10(7), 753. doi: https://doi.org/10.3390/ma10070753.
  • 17. Brekhovskikh L. Waves in Layered Media. 2nd edition. Academic Press, New York. 1976.
  • 18. Basatskaya L.V., Ermolov I.N. Theoretical analysis of ultrasonic longitudinal undersurface waves in solid medium. Sov. J. Nondestruct. Test. 1981; 16(7), 524–530.
  • 19. Junghans P., Bray D.E. Beam characteristics of high angle longitudinal wave probes. In: NDE: Applications, Advanced Methods, and Codes and Standards. R.N. Pangbom, D.E. Bray, J.F. Cook, C.D. Colwfer, D.M. Schlader, Eds. Vol. 216 of PVP, vol. 9 of NDE of Proceedings of the Pressure Vessels and Piping Conference, San Diego, California. 1991. doi: https://doi.org/10.1016/0963-8695(92)90366-O.
  • 20. Langenberg K.J., Fellenger P., Marklein R. On the nature of the so-called subsurface longitudinal wave and/or the surface longitudinal ‘creeping’ wave. Res. Nondestructive Evaluation. 1990; 2, 59–81. doi: https://doi.org/10.1007/BF01606421.
  • 21. Dickens J.R., Bender D.A., Bray D.E. A critical-angle ultrasonic technique for the inspection of wood parallel to grain. Wood and Fiber Science. 1996; 45–47.
  • 22. Bray D.E., Tang W. Subsurface stress evaluation in steel plates and bars using the LCR ultrasonic wave. Nuclear Engineering and Design. 2001; 207, 231–240. doi: https://doi.org/10.1016/S0029-5493(01)00334-X.
  • 23. Qozam H., Hoblos J., Bourse G., Robin C., Walaszek H., Bouteille P., Cherfaout M. Ultrasonic stress measurement in welded component by using LCR waves: Analysis of the microstructure effect. Material Science Forum. 2006; 524–525, 453–458.
  • 24. Sarpun I., Kilickaya M., Tuncel S. Mean grain size determination in marbles by ultrasonic velocity techniques. NDT & E International. 2005; 38(1), 21–25. doi: https://doi.org/10.1016/j.ndeint.2004.06.009.
  • 25. Aghaie-Khafri M., Honarvar F., Zanganeh S. Characterization of grain size and yield strength in AISI 301 stainless steel using ultrasonic attenuation measurements. Journal of Nondestructive Evaluation. 2012; 31, 191–196. doi: https://doi.org/10.1007/s10921-012-0134-z.
  • 26. Ahn B., Lee S.S., Hong S.T., Kim H.C., Kang S.J.L. Application of the acoustic resonance method to evaluate the grain size of low carbon steels. NDT & E International. 1999; 32(2), 85–89.
  • 27. Ahn B., Lee S.S. Effect of microstructure of low carbon steels on ultrasonic attenuation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2000; 47(3), 620–629.
  • 28. Liu B., Miao W., Dong S., He P. Grain size effect on LCR elastic wave for surface stress measurement of carbon steel. Nondestructive Testing and Evaluation. 2018; 33(2), 139–153.
  • 29. Liu B., Miao W., Dong S., He P. Grain size correction of welding residual stress measurement in a carbon steel plate using the critical refraction of longitudinal waves. Research in Nondestructive Evaluation. 2019; 30(2), 112–126. doi: https://doi.org/10.1080/09349847.2017.1375170.
  • 30. Bouda A.B., Lebaili S., Benchaala A. Grain size influence on ultrasonic velocities and attenuation. NDT & E International. 2003; 36(1), 1–5. doi: https://doi.org/10.1016/S0963-8695(02)00043-9.
  • 31. Buenos A.A., dos Santos Jr. A.A., Pereira Jr. P., Santos C.S. Effect of mean grain size in the time of flight for LCR waves. In: ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers. 2012; 45264, 63–69. doi: https://doi.org/10.1115/IMECE2012-89055.
  • 32. Buenos A.A., Pereira Jr. P., Mei P.R., dos Santos A.A. Influence of grain size on the propagation of LCR waves in low carbon steel. Journal of Nondestructive Evaluation. 2014; 33(4), 562–570. doi: https://doi.org/10.1007/s10921-014-0252-x.
  • 33. Qozam H., Chaki S., Bourse G., Robin C., Walaszek C., Bouteille P. Microstructure effect on the LCR elastic wave for welding residual stress measurement. Experimental Mechanics. 2010; 50, 179–185. doi: https://doi.org/10.1007/s11340-009-9283-0.
  • 34. Babu S.A.V., Giridharan P.K., Ramesh Narayanan P., Murty N. Microstructural investigations on ATIG and FBTIG welding of AA 2219 T87 aluminum alloy. Applied Mechanics and Materials. 2014; 592, 489–493.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db439173-cff6-4e09-8b0c-0a705c5c40cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.