PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrating genomics & AI for precision crop monitoring and adaptive stress management

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Integracja genomiki i sztucznej inteligencji w celu precyzyjnego monitorowania upraw i adaptacyjnego zarządzania stresem
Języki publikacji
EN
Abstrakty
EN
Advancements in genomics and artificial intelligence are transforming precision agriculture by enabling early stress detection and adaptive crop management. Integrating genomic analysis, image-based stress detection, and real-time environmental monitoring, this approach assesses plant responses to stress factors such as drought and disease. A BERT-based model processes genomic data, while computer vision identifies visual stress indicators like wilting and discoloration. IoT sensors track environmental parameters such as soil moisture, temperature, andhumidity, refining predictionsand optimizing intervention strategies.The system leverages multimodal data fusion to enhance decision-making, improving the accuracy of stress detection and mitigation strategies. Machine learning models continuously adaptby learning from historical and real-time data, making recommendations more precise over time. A web-based platform allows users to upload plant images and environmental data for real-time analysis, generating personalized recommendations for irrigation, fertilization, and disease management. The platform's intuitive interface ensures accessibility for farmers and agricultural experts, facilitating widespread adoption.By combining AI, genomics, and IoT, this system enhances crop health, maximizes yield, and promotes sustainable farming through proactive, data-driven decision-making. Ultimately, it aims to reduce resource waste, mitigate crop losses, and support scalable, technology-driven agricultural solutions.
PL
Postępy w genomice i sztucznej inteligencji przekształcają rolnictwo precyzyjne, umożliwiając wczesne wykrywanie stresu i adaptacyjne zarządzanie uprawami. Integrując analizę genomiczną, wykrywanie stresu na podstawie obrazu i monitorowanie środowiska w czasie rzeczywistym, podejście to ocenia reakcje roślin na czynniki stresowe, takie jak susza i choroby. Model oparty na BERT przetwarza dane genomowe, podczas gdy wizja komputerowa identyfikuje wizualne wskaźniki stresu, takie jak więdnięcie i przebarwienia. Czujniki IoT śledzą parametry środowiskowe, takie jak wilgotność gleby, temperatura i wilgotność, udoskonalając prognozy i optymalizując strategie interwencji. System wykorzystujemultimodalną fuzję danych w celu usprawnienia procesu decyzyjnego, poprawiając dokładność wykrywania stresu i strategii jego łagodzenia. Modele uczenia maszynowego stale dostosowują się, ucząc się na podstawie danych historycznych i danych w czasie rzeczywistym, dzięki czemu zalecenia są z czasem bardziej precyzyjne. Platforma internetowa umożliwia użytkownikom przesyłanie zdjęć roślin i danych środowiskowych do analizy w czasie rzeczywistym, generując spersonalizowane zalecenia dotyczące nawadniania, nawożenia i zarządzania chorobami. Intuicyjny interfejs platformy zapewnia dostępność dla rolników i ekspertów w dziedzinie rolnictwa, ułatwiając powszechne przyjęcie. Łącząc sztuczną inteligencję, genomikę i IoT, system tenpoprawia zdrowie upraw, maksymalizuje plony i promuje zrównoważone rolnictwo poprzez proaktywne podejmowanie decyzji w oparciu o dane. Ostatecznie ma on na celu zmniejszenie marnotrawstwa zasobów, złagodzenie strat w uprawach i wspieranie skalowalnych, opartych na technologii rozwiązańrolniczych.
Rocznik
Strony
18--26
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Siddhartha Academy of Higher Education, Department of Electronics and Instrumentation Engineering, Vijayawada, India
  • Siddhartha Academy of Higher Education, Department of Computer Science and Engineering,Vijayawada, India
  • Siddhartha Academy of Higher Education, Department of Computer Science and Engineering, Vijayawada, India
  • Gayatri Vidya Parishad College of Engineering, Department of Computer Science and Engineering, Visakhapatnam, India
  • Vignan's Institute of Engineering for Women, Department of Electronics and Communication Engineering, Visakhapatnam, India
  • Vignan's Institute of Engineering for Women, Department of Electronics and Communication Engineering, Visakhapatnam, India
  • Vignan's Institute of Engineering for Women, Department of Electronics and Communication Engineering, Visakhapatnam, India
  • Vignan's Institute of Engineering for Women, Department of Electronics and Communication Engineering, Visakhapatnam, India
autor
  • Vignan's Institute of Engineering for Women, Department of Electronics and Communication Engineering, Visakhapatnam, India
  • Maharaj Vijayaram Gajapathi Raj College of Engineering, Department of Electronicsand Communication Engineering, Vizianagaram, India
Bibliografia
  • [1] Ansari A., Gangwar S., Raza K.: Data-Driven Genomics: A Triad of Big Data, Cloud, and IoT in Genomics Research. Deep Learning in Genetics and Genomics, Academic Press, 2025, 363–381 [https://doi.org/10.1016/B978-0443-27574-6.00016-3].
  • [2] Baulcombe D. C., Dean C.: Epigenetic Regulation in Plant Responses to the Environment. Cold Spring Harbor Perspectives in Biology 6(9), 2014, a019471 [https://doi.org/10.1101/cshperspect.a019471].
  • [3] Chandra R. M., Neelaiahgari G. V. S. T., Vanapalli S. S.: Extracting EmotionCause Pairs: A BiLSTM-Driven Methodology. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14(4), 2024, 97–103 [https://doi.org/10.35784/iapgos.6679].
  • [4] Chandra R. M., Neelaiahgari G. S., Vanapalli S. S.: Enhancing Driver Safety Through Sensor-Based Detection and Mitigation of Health Risks in Vehicles. International Conference on Algorithms and Computational Theory for Engineering Applications. Springer, Cham 2024 [https://doi.org/10.1007/978-3031-72747-4_30].
  • [5] Chouhan S. S., Singh U. P., Jain S.: Applications of Computer Vision in Plant Pathology: A Survey. Archives of Computational Methods in Engineering 27(2), 2020, 611–632 [https://doi.org/10.1007/s11831-019-09324-0]. Opinion
  • [6] Cushman J. C., Bohnert H. J.: Genomic Approaches to Plant Stress Tolerance. Current in Plant Biology [https://doi.org/10.1016/S1369-5266(99)00052-7]. 3(2), 2000, 117–124
  • [7] Dang M., et al.: Computer Vision for Plant Disease Recognition: A Comprehensive Review. The Botanical Review 90(3), 2024, 251–311 [https://doi.org/10.1007/s12229-024-09299-z].
  • [8] Grusak M. A.: Genomics-Assisted Plant Improvement to Benefit Human Nutrition and Health. Trends in Plant Science 4(5), 1999, 164–166 [https://doi.org/10.1016/s1360-1385(99)01400-4].
  • [9] Harakannanavar S. S., et al.: Plant Leaf Disease Detection Using Computer Vision and Machine Learning Algorithms. Global Transitions Proceedings, 3(1), 2022, 305–310 [https://doi.org/10.1016/j.gltp.2022.03.016].
  • [10] Imelfort M., Edwards D.: De Novo Sequencing of Plant Genomes Using Second-Generation Technologies. Briefings in Bioinformatics 10(6), 2009, 609618 [https://doi.org/10.1093/bib/bbp039].
  • [11] Iqbal B., et al.: Unlocking Plant Resilience: Advanced Epigenetic Strategies Against Heavy Metal and Metalloid Stress. Plant Science, 2024, 112265 [https://doi.org/10.1186/s13062-016-0113-x].
  • [12] Islam T.: Genomic Surveillance for Tackling Emerging Plant Diseases, with Special Reference to Wheat Blast. CABI Reviews 19(1), 2024 [https://doi.org/10.1079/cabireviews.2024.0050].
  • [13] Jiang S., et al.: Fine-Tuning BERT-Based Models for Plant Health Bulletin Classification. arXiv, preprint, [https://doi.org/10.48550/arXiv.2102.00838]. arXiv:2102.00838, 2021
  • [14] Kumar M., et al.: Genomics‐Driven Strategies for Sustainable Crop Improvement in Computer Vision, Agriculture. and Genomics at the Nexus of AI, Machine [https://doi.org/10.1002/9781394268832.ch15]. Learning, 2025, 321–343
  • [15] Madhuri C. R., et al.: Smart Irrigation Optimization with IoT and Weather Forecasts for Sustainable Crop Management. 1st International Conference on Advances in Computing, Communication and Networking - ICAC2N, IEEE, 2024 [https://doi.org/10.1109/ICAC2N63387.2024.10895564].
  • [16] Mochida K., et al.: Computer Vision-Based Phenotyping for Improvement of Plant Productivity: A Machine Learning Perspective. GigaScience 8(1), 2019, giy153 [https://doi.org/10.1093/gigascience/giy153].
  • [17] Nayak A., et al.: Leveraging BERT-Enhanced MLP Classifier for Automated Stress Detection in Social Media Articles. International Conference on Advances in Computing Research on Science Engineering and Technology – ACROSET, IEEE, 2024 [https://doi.org/10.1109/ACROSET62108.2024.10743857].
  • [18] Perez-de-Castro A., et al.: Application of Genomic Tools in Plant Breeding. Current Genomics 13(3), 2012, 179–195 [https://doi.org/10.2174/138920212800543084].
  • [19] Pimentel H. C. B., de Lima A. P. M., Latawiec A. E.: Recommendations for Implementing Therapeutic Gardens to Enhance Human Well-Being. Sustainability 16(21), 2024, 9502 [https://doi.org/10.3390/su16219502].
  • [20] Riyanto S., et al.: Plant-Disease Relation Model Through BERT-BiLSTM-CRF Approach. Indonesian Journal of Electrical Engineering and Informatics (IJEEI) 12(1), 2024, 113–124 [https://doi.org/10.52549/ijeei.v12i1.5154].
  • [21] Robène I., et al.: Development and Comparative Validation of Genomic-Driven PCR-Based Assays to Detect Xanthomonas citri pv. citri in Citrus Plants. BMC Microbiology 20, 2020, 1–13 [https://doi.org/10.1186/s12866-020-01972-8].
  • [22] Schaffer R., et al.: Monitoring Genome-Wide Expression in Plants. Current Opinion in Biotechnology 11(2), 2000, 162–167 [https://doi.org/10.1016/S0958-1669(00)00084-7].
  • [23] Vanapalli S. S., et al.: BiLSTM-Powered Emotion Recognition from ECG and GSR Signals. International Journal of Mathematical Sciences and Computing (IJMSC), 11(2, 2025, 38–51 [https://doi.org/10.5815/ijmsc.2025.02.04].
  • [24] Wäldchen, Jana, and Patrick Mäder.: Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review. Archives of Computational Methods in Engineering 25, 2018, 507–543 [https://doi.org/10.1007/s11831-016-9206-z].
  • [25] Wicker T., et al.: Low-Pass Shotgun Sequencing of the Barley Genome Facilitates Rapid Identification of Genes, Conserved Non-Coding Sequences and Novel Repeats. BMC Genomics 9, 2008, 518 [https://doi.org/10.1186/14712164-9-518].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db433c9c-86d0-477f-8b93-e67d16c4210b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.