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The paper is aimed to give a visual representation of the loading surface for different types of
irrecoverable deformation in the electrical field. Three situations of deforming coupled with
direct current (DC) are discussed: primary creep, secondary creep, and plastic deformation.
Understanding the evolution of loading surface under the action of current is considered
to be the necessary step pertaining to design forming processes. Therefore, the analysis of
the evolution of loading surface in the electrical field and its comparison with the case of
ordinary loading is the main subject of this paper.
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1. Introduction

Three key concepts form the basis of almost all theories of plasticity. They are:

• Yield criteria, which predict whether the solid responds elastically or plastically. The cri-
teria define which combination of multi-axial stress will cause yielding and describe the
surface in the stress space that demarks the boundary between the elastic and plastic be-
havior of materials. Development of yielding criteria is hence pivotal in predicting whether
or not a material will begin to yield under a given stress state.

• Strain hardening rules, which control the way in which resistance to plastic flow increases
with plastic straining. The hardening rule gives the evolution in the yield criterion during
plastic deformation. Four typologies of hardening may arise during irrecoverable straining:
(i) isotropic hardening, which refers to the proportional expansion of the initial yield
surface; (ii) kinematic hardening, if the deforming material shows a yield surface that does
not change in form and size but translates in the stress space; (iii) rotational hardening,
which causes the yield locus to rotate; (iv) distortional hardening, which causes the yield
locus to distort. Stress states inside the yield/loading surface (subsequent yield surface)
result in elastic deformation. The material yields when the stress state reaches the yield
surface and further loading causes plastic deformation. Stresses outside the loading surface
do not exist, and the plastic strain and shape of the loading surface evolve to maintain
stresses either inside or on the loading surface.

• The plastic flow rule, which determines the relationship between stress and plastic strain
under multi-axial loading.

These concepts will be considered in terms of the synthetic theory of irrecoverable deformation
(Rusinko and Rusinko, 2009, 2011) for the case of ordinary loading and that coupled with direct
current. With DC, the following phenomena are recorded and will be discussed (Andrawes et
al., 2007; Chen and Yang, 2008; Kinney et al., 2009; Li et al., 2015; Perkins et al., 2007; Ross et
al., 2007; Sanmartin et al., 1983; Nguyen et al., 2016; Yang and Zhao, 2010; Zhao et al., 2012,
2016; Zhao and Yang, 2014):
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(i) an increase in the steady state creep rate coupled with DC;

(ii) an increase in transient creep and shortening of its duration under the action of the current;

(iii) stress-drop during plastic deformation with a pulsed electric current.

Our first steps to model the phenomena listed (schematically sketched in Fig. 1) can be found in
Rusinko (2016) and Rusinko and Varga (2018), which show good agreement with experimental
results. The main goal of this paper is (a) to strengthen the capacity of the results obtained
earlier – the formulae proposed by Rusinko and Varga (2018) give satisfactory results for the
steady state creep as a function of current intensity only for one temperature (323K), (b) to
give a visual representation of the evolution of loading surface for irrecoverable strains in the
electrical field.

Fig. 1. The effect of DC upon (a) steady state creep rate, (b) transient creep, (c) plastic straining

2. Synthetic theory

The synthetic theory incorporates the Budiansky slip concept and the Sandres flow theory.

As in the Budiansky concept, irrecoverable deformation at a point of the body is calculated
at two levels of the material structure: micro- and macro-level. For the macro-level, we take as
the elementary volume of the body V , which consists of a large quantity of microvolumes V0 (slip
systems), each being an element of the continuous body, capable of deforming under the applied
forces via slip of one part of V0 in relation to another. Accordingly to Batdorf and Budiansky
(1949), it is assumed that the stress state in every slip system is the same as the macrostress-
-state. Nevertheless, in contrast to the even distribution of the stress over slip systems, the
plastic deformation (or plastic slip) within V0 strongly depends on the orientation of the slip
system relative to the direction of the acting forces. It is assumed that the quantity of V0 is so
great (theoretically it tends to infinity) that every possible orientation of slip systems exists at
the point of the body. The total deformation of V is determined as a sum of the components of
deformations generated in volumes V0.

The realization of Budiansky’s approach to the modelling of irrecoverable deformation takes
place in the three-dimensional subspace S3 of the five-dimensional Ilyushin deviatoric space,
where the loading is presented by a stress vector S whose length equals to the effective stress τ0.
The yield criterion is taken as the von Mises rule, which gives a sphere of radius

√

2/3σS in S3
(σS is the yield limit of the material)

S21 + S
2
2 + S

2
3 =
2

3
σ2S (2.1)

The specific feature of the synthetic theory consists mainly in formulation of the hardening rule.
Let us draw tangent planes at every point of sphere (2.1). As a result, we obtain the system



Loading surface in the plastic and creep straining coupled... 197

of equidistant planes. The position of the plane in S3 is given by the normal vector N and its
distance from the origin of coordinates HN . It is clear that in the virgin state, HN =

√

2/3σS
for all directions. Plastic deformation starts when the stress vector reaches sphere (2.1), or in
other words, the first plane is on the endpoint of S, |S| =

√

2/3σS.

Following Sanders (1954), we treat the yield surface as the inner envelope of the tangent
planes (Fig. 2a). To extend this principle for the further increase in loading as well |S| >

√

2/3σS,
we suggest that the stress vector translates on its endpoint (loading point) those planes which
it reaches. Now, the loading surface, being the inner envelope of tangent planes, takes the form
as shown in Fig. 2b. Therefore, we do not define in advance the evolution of the loading surface
during plastic straining, but the loading surface follows the planes displaced by the stress vector
so that be their inner envelope.

Fig. 2. The interpretation of (a) yield- and (b) loading surface as the inner envelope of tangent planes

The physical sense of plane movements is that each plane translated by S corresponds to
plastic slip within appropriate V0. For example, in uniaxial tension, the first plane which is at
the endpoint of the stress vector corresponds to the slip system inclined 45◦ with respect to
the acting stress. As the loading increases, other planes are shifted by the stress vector, which
means that slip systems with less favorable orientations are involved in the progress of plastic
deformation. Micro-deformation developed by motion of one plane, i.e. within one slip system,
is modelled by an elementary strain vector which is assumed to be perpendicular to the plane
(Fig. 3).

Fig. 3. The formulation of the flow rule in terms of the synthetic theory
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It becomes obvious that the plane distance HN reflects the measure of the hardening of
material. Indeed, the greater distance to a plane, the greater stress vector is needed to reach it
and induce plastic deformation.

The total level of strains at a point of body, strain vector e, is determined by adding plastic
strains developed at every moving plane (Rusinko and Rusinko, 2009, 2011)

e =

∫∫∫

V

ϕNN dV (2.2)

where ϕN is referred to as strain intensity and symbolizes an average measure of plastic defor-
mation within one slip system. The strain intensity is determined from the constitutive equation
of the synthetic theory

dψN = rdϕN −KψNdt (2.3)

where ψN is defect intensity, an average measure of defects in the crystalline grid (dislocations,
point defects, twins, etc.) arising during irrecoverable straining and hindering its progress. ψN is
defined as

ψN = H
2
N − I2N − S2P (2.4)

and

ψN =

{

(S ·N)2 − I2N − S2P plane is at the enpoint of S, HN = S ·N
0 vector S does not reach a plane, HN > S ·N

(2.5)

The scalar product S ·N gives the resolved shear stress acting with the slip system. SP denotes
the radius of the von Mises sphere.

Equations (2.3) and (2.4) form the flow rule for every slip system (microdeformation), and Eq.
(2.2) gives an average of slip flows (macrodeformation). Equation (2.3) says that the increment
in defects is a result of two competing processes: i) development of plastic (instant) deformation
and ii) time-dependent relaxation of the defects. Concrete loading and thermal circumstances
determine which mechanism dominates. Such a formulation covers problems ranged from plastic
strain to unsteady/steady creep, as well as the relaxation of defects.

Equation (2.4) states that the greater the distance traveled by a plane on the endpoint of S
(see Fig. 2), the greater is the number of defects nucleated and cumulated in the process of
plastic deforming.

The rate-dependent fashion of plastic flow is provided by the function IN , the rate integral,
in formula (2.4)

IN (t) = B

t
∫

0

Ṡ ·N exp[−p(t− s)] ds (2.6)

which governs:

• the value of yield limit as a function of the loading rate Ṡ (we use the notion of “creep
limit” σP , as Ṡ = 0, i.e. when creep deformation is considered) and

• the kinetics of primary creep.

The rate-integral serves as a measure of the difference between the average stress acting in mate-
rial and the local stresses (stresses of the third kind). This difference results in elastic distortions
of the crystalline lattice, which increases with the loading rate and hinders the progress of plastic
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deformation. At the same time, the distortions can relax at favorable conditions, e.g. high tem-
perature and/or constant in time stresses. This process facilitates the motion of dislocations and
acts as a driving force of primary creep. As the energy cumulated in active loading is exhausted,
the material deforms in the regime when softening and hardening are in balance. Summarizing,
the IN (t) increases as Ṡ > 0 and decreases under subsequent constant stresses (primary creep).
The condition IN (t)→ 0 symbolizes the transition to the secondary creep.
The function K in Eq. (2.4), which regulates the steady state creep rate, is defined as

K = K1(T )K2(τ0) K1 = exp
(

− Q

RT

)

K2 =
9
√
3cr

2
√
2π

τk−20 (2.7)

In formulae (2.3), (2.6) and (2.7), c, k, B and p are the model constants to be determined to
achieve the best fit between the analytical and experimental results.

Based on the above, the main features of the synthetic theory are summarized as follows:

• While a material in its virgin state is assumed to possess isotropic plastic properties, sphere
(2.1), the plastic deformation is of definitely anisotropic fashion. The strain hardening of
the material varies depending on the position of tangent planes, i.e. the orientation of the
slip system.

• The evolution of the loading surface is not prescribed a priori, but strongly depends on the
hodograph of the stress vector, i.e. the loading path governs entirely the transformation
of the loading surface.

• At the loading point, a corner singularity arises on the loading surface, which is of crucial
importance when curvilinear loading trajectories are considered.

The flow rule of the synthetic theory is defined in such a way that all types of deformation, plastic
or creep, can be described from the same system of constitutive equations (2.2)-(2.6). This is due
to the fact that the synthetic theory is of physical nature, irrecoverable deformation ϕN is related
to the function which reflects the amount of crystalline grid defects nucleated and multiplied
during the deformation ψN . Further, the time- and loading-rate-dependent nature of the rate
integral, together with Eq. (2.4), completes the formulation of irrecoverable deformation from
the unified position. Further throughout, we use the single notion of irrecoverable deformation,
whose components, instant or time-dependent, manifest themselves depending on the loading
and thermal regimes.

3. Synthetic theory extended to the case of deformation in an electrical field

To model the effect of DC upon irrecoverable deformation we address the researchers’ report
about what action the electron wind exerts upon plastic or creep straining. This action can be
summarized as follows:

• DC-induced Joule heating causing a change in local temperature and resulting in time-
-dependent plastic deformation,

• The momentum exchange between moving electrons and lattice atoms reducing the energy
barrier and increasing the migration velocity of atoms,

• The intensification of the current field assisted sliding rate and diffusional creep.

To reflect the points listed above, we enhance the action of resolved shear (S · N = HN ) by
introducing a term that expresses the assisting role of passing current

ψN = H
2
N (1 + C

2)− (ICN )2 − S2P (3.1)
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where C = C(J, T ), J is current intensity [kA/cm2]. In other words, Eq. (3.1) expresses the
intensification of slides within a slip system due to the passage of current. The function C is
defined as a product of two functions

C = U(J)W (T ) (3.2)

both related to their arguments as power functions

U = u1J
u2 W = (w1T − w2)w3 + w4 (3.3)

where uk and wl are model constants to be determined to best fit the experiments. It is the
idea to define function C via Eqs. (3.2) and (3.3) that makes it possible to obtain satisfactory
results for ε̇ ∼ J2 plots for a wide range of temperatures (see below Fig. 7b).
To catch the effect of DC upon the parameters of primary creep we propose to modify IN as

ICN = BC

t
∫

0

dS

ds
N exp[−pC(t− s)] ds BC = B +B1J

B2 pC = p+ p1J
p2 (3.4)

To account for the DC-induced Joule heating, we introduce term 5.23J2 (Zhao and Yang, 2014)
into formula (2.7) for K1(T )

K1(T ) = exp
[

− Q

R(T + 5.23J2)

]

(3.5)

4. Plastic deformation: ordinary case and deformation under DC impulse

Consider uniaxial tension with the sole non-zero stress tensor component σ, when the stress
vector lies along S1-axis, S(

√

2/3σ, 0, 0). The orientation of tangent planes is given by the com-
ponents of the unit vector N1

N1 = cosα cosβ cos λ N2 = sinα cos β cos λ N3 = sin β cos λ (4.1)

Now, the distance to the plane, which is at the endpoint of S, is

HN = S1N1 + S2N2 + S3N3 =

√

2

3
σ cosα cos β cos λ (4.2)

It is clear that the first plane reached by the S on sphere (2.1) is perpendicular to S1-axis,
α, β, λ = 0, which means the most favorably oriented slip system. Further growth in |S| increases
the set of planes shifted by S.
If to write down Eq. (2.3) as

rϕN = ψN +K

∫

ψN dt (4.3)

we can ignore the time-integral due to the small duration of plastic deforming. As a result, we
get

rϕN = ψN (4.4)

It says that plastic deformation is accompanied by the nucleation and multiplication of de-
fects/obstacles, and its development demands a constant increase in acting stresses.

1Angle λ gives the position of the plane in S3 which is the trace of the plane tangential to the
five-dimensional yield surface.
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Therefore, within one slip system, Eqs. (2.5) and (4.4) give the strain intensity as2

ϕN =
1

r
(H2N − σ2S) =

2

3r
[(σ cosα cosβ cos λ)2 − σ2S] (4.5)

The macrodeformation is determined from Eq. (2.2)

e =
2

3r

α1
∫

−α1

β1
∫

−β1

λ1
∫

0

[(σ cosα cos β cos λ)2 − σ2S] cosα cos2 β cos λ dα dβ dλ (4.6)

The boundaries of integration, i.e. the range of angles where ϕN is nonzero, are

cos λ1 =
σS

σ cosα cos β
cosα1 =

σS
σ cos β

cos β1 =
σS
σ

(4.7)

By integrating in (4.6) within range (4.7), we obtain

e = aF (b) a =
πσ2S
9r
= const b = cos β1

F (b) =
1

b2

(

2
√

1− b2 − 5b2
√

1− b2 + 3b4 ln 1 +
√
1− b2
b

) (4.8)

F (b) is a decreasing function of b, i.e. an increasing one of σ. To simplify the calculations, we
approximate the function F from (4.8) as

F ≈
(1

x
− 1

)2
F (1) = F ′(1) = 0 (4.9)

Experiments conducted by Nguyen with co-workers (Nguyen et al., 2016) show that a short
electric impulse results in an immediate decrease in the applied stress (Fig. 1c). In other words,
the tensile stress needed to maintain the same deformation as before the impulse, incurs a step-
-wise decrease (the portions following the stress-drop are not considered here). The flow stress
decreases with the increasing current for two reasons: (i) the corresponding temperature due
to Joule heating increases as the current increases; (ii) the electric current helps the glide and
climb of dislocation, and the decrease of dislocation density and dislocation multiplication rate
promotes the reduction of flow stress.
Once a pulse of current is “On”, Eqs. (3.1) and (4.4) give

ϕNC =
1

r
[H2NC(1 + C

2)− σ2S ] (4.10)

To maintain the deformation at the same level as before the impulse, we demand that

ϕNC = ϕN (4.11)

which, on the base of (4.5) and (4.10), can be ensured only if

H2NC(1 + C
2) = H2N =⇒ HNC =

HN√
1 + C2

(4.12)

The relation between HNC and HN means that the electric pulse results in jump-wise motions
of planes toward the origin of coordinates. Since the ratio HNC/HN does not depend on the

2If to consider plastic deformation at low homology temperatures, the role of the rate-integral dimi-
nishes.
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angles α, β and λ, we conclude that the plane displacements are of the same magnitude in all
directions. This implies that the loading surface, at the instant of the electric pulse, preserves
its shape as before the action of current: see Fig. 4a. The length of SC vector, i.e. the value of
tension stress σC , is calculated via Eq. (4.12) at α, β, λ = 0 as

σC =
σ√
1 + C2

(4.13)

Figure 4b demonstrates a series of loading surfaces constructed for Magnezium AZ31 alloy in
uniaxial tension. Electric impulses of different current densities Jm (30, 45, 60, and 70A/mm

2)
were switched on during plastic deforming at σ = 246MPa. The model values of σC in (4.13) were
calculated at C1 = 0.0265 (mm

2/A)C2 and C2 = 1.0. Since during the experiment considered
the temperature is constant, we take W (T ) = 1. As a result, good agreement with experimental
data is obtained (Rusinko and Varga, 2018): Eq. (4.13) gives values σC for Jm as 194.4, 159.9,
128, 86MPa vs. 196.8, 184.5, 130, 100.7MPa in the experiment, which means the relative error
of 1.2, 13, 1.4, 14%. The orientation of the boundary plane being at the endpoint of the stress
vector before the DC impulse, i.e. the value of angle β1 from (4.8), is

β1 = arccos
σS
σ
= 42.8◦ (4.14)

where σS is taken 180MPa (Nguyen et al., 2016).
Due to the axial symmetry of the loading surface in uniaxial tension, it is enough to provide

information about the angle β1. The radii of circles for the directions β > |β1| are calculated by
Eq. (4.13)

σSm =
σS

√

1 + C2m
(4.15)

where Cm (m = 1, 4) are from Eqs. (3.2) and (3.3). Formula (4.15) gives the following values
for σSm: 140.9, 115.7, 98.7 and 80.9MPa.

Fig. 4. (a) Loading surfaces corresponding to the stress drop effect. (b) Loading surfaces corresponding
to the stress drop effect due to different values of current intensity. Numbers 1, . . . , 4 correspond to the

indexes at σSm

5. Creep deformation: ordinary case and deformation coupled with DC

Since the duration of primary creep is usually much less than that of secondary creep, the time-
-integral in (4.3) can be ignored and we return again to Eq. (4.4) with the difference being that
the rate integral is included in formula (2.4). As, after the active loading, the stress value remains
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unchangeable in time, the rate-integral decreases in the manner as shown below (Rusinko and
Varga, 2018)

H2N = ψN + I
2
N + S

2
P = ψN + [BS ·N exp(−pt)]2 + S2P SP =

√

2

3
σP (5.1)

The formula above states that the planes move toward the origin of coordinates with time,
and the number of planes being on the endpoint of the stress vector increases. This process
symbolizes the temporary increase in deformation. As exp(−pt)→ 0, these movements terminate
and we pass to the secondary portion of the creep with a constant rate. From the analysis of
the rate integral (Rusinko and Rusinko, 2012) we can conclude that a) the constant B governs
the magnitude of primary creep – the grater B, the greater deformation develops in primary
creep, b) the constant p governs the duration of primary creep – the grater p, the faster the
time-integral tends to zero, i.e. the shorter primary portion is. That is why we propose Eq. (3.4)
when modelling the primary creep coupled with DC. The greater value of BC , comparing to B,
symbolizes the intensification of relaxation processes in the electric field during the steady state.
And since the processes are quicker, they take less time to complete the primary creep – we
introduce pC which is greater than p by the current intensity.
Equations (3.1), (3.4) and (4.3) give

ϕNC =
2

3r
{σ2(1 + C2)(cosα cos β cosλ)2 − [σBC exp(−pCt) cosα cos β cos λ]2 − σ2P} (5.2)

The strain intensity ϕNC is non-zero in the following range

cos λ1C(t) =
cosα1C(t)

cosα
cosα1C(t) =

cos β1C(t)

cosβ

cos β1C(t) =
σP

σ
√

1 + C2 −B2C exp(−2pCt)

(5.3)

By integrating the ϕNC in Eq. (2.2) over range (5.3), we obtain the primary creep strain vector

e(t) = a0F [bC(t)] a0 =
πσ2P
9r

bC(t) = cosβ1C(t) < b(t) (5.4)

where b(t) is from Eq. (5.3) taken at C = 0.
Since at the beginning of loading (t = 0) the rate-integral from (3.4) equals zero, the presence

of DC results in the decrease of the radius of the initial sphere. Indeed, Eq. (3.1) at ψN , IN = 0
gives that

HN ≡ σPC =
σP√
1 +C2

(5.5)

Combining this fact with Eq. (5.1), we obtain Fig. 5a, where loading surfaces for J = 0 and J > 0
at a given instant of primary creep are shown. It unequivocally demonstrates the softening of the
material under the action of current. Figure 5b shows the dynamics of the change in boundary
angles β1C and β1, which supports the sketch in Fig. 5a. One can see grater values of β1C
comparing to β1 and their faster stabilization at a constant level. Figure 5b is constructed on
the base of the last relationship from (5.4) with constants taken from the authors’ earlier work
(Rusinko and Varga, 2018).
Formulae for the steady state creep rate are obtained from Eqs. (2.5) and (4.3), provided

that IN = 0 and, as a result, ψ̇N = 0. Therefore, Eq. (2.5) takes the following form

H2N (t) = ψN (t) + S
2
P = const (5.6)
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Fig. 5. (a) Loading surfaces at a given moment in the course of primary creep: 1 – J = 0, 2 – J > 0.
(b) Change in the boundary angles during primary creep of tin in uniaxial tension: σ = 4.63MPa,

T = 348K

This means that the motions of planes occurring in the progress of primary creep terminate,
and there is a set of planes on the endpoint of the stress vector which determines the value of
the creep rate. The fact that ψ̇N = 0 reflects equilibrium between the softening and hardening
of the material during the secondary creep.
Equations (4.3) give the strain-intensity-rate in secondary creep as

rϕ̇N = KψN = const (5.7)

If to introduce the term reflecting the action of DC upon the deformation, we get

ϕ̇NC =
K

r
ψNC =

2K

3r
[σ2(1 +C2)(cosα cosβ cos λ)2 − σ2P ] (5.8)

The values of boundary angles can be obtained from (5.3) by letting IN = 0

cos λ1C =
σP

σ
√
1 + C2 cosα cos β

cosα1C =
σP

σ
√
1 + C2 cos β

cos β1C =
σP

σ
√
1 + C2

(5.9)

Again, the final procedure is to calculate the macrodeformation via Eq. (2.2), which gives the
secondary creep vector rate as

ėC = AF (bC) bC = cosβ1C A =

√
3cσ2P
2
√
2
σk−2K (5.10)

where K is from Eqs. (2.7) and (3.5).

6. Discussion

By letting in (5.8) ψNC = 0, we again arrive at result (5.5). This fact means that the electric
field decreases the stress needed to induce irrecoverable straining. Further, inequality β1C > β1,
obtained by comparing (5.9) and (4.7), indicates that the number of slip systems involved in
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creep deformation increases due to DC. Furthermore, comparing to Eq. (4.5), the term (1+C2)
in (5.8) shows more intensive development of creep deformation within every slip system. This
fact is evident from Fig. 7a, where on the base of Eq. (5.6) and (5.9), the loading surfaces for
ordinary secondary creep and that coupled with DC are shown. Consider two identically oriented
planes 1 and 2, they are tangent to the sphere of radius from (5.5) and SP (ordinary creep),
respectively. It is easy to see that for a given stress vector, when both planes are in position 3,
the distances traveled by the planes are different. If, for example, to follow the intersections of
the planes with S1-axis, it is obvious that AA1C > AA1. This means that the distance traveled
by plane in the presence of DC is greater than in ordinary creep. Figures 6a and 6b demonstrate
the change in σPC and β1C for tin as a function of current intensity and temperature.

Fig. 6. (a) β1C ∼ J2 and (b) σPC ∼ J2 plots at different temperatures

Fig. 7. (a) Loading surfaces for steady state creep: 1 – J = 0, 2 – J > 0. (b) σPC ∼ J2 plots at different
temperatures: points – experiment, lines – model

The most important result is the dependence between the steady state creep rate and the
current intensity at different temperatures, Fig. 7b. It must be stressed that, in contrast to our
earlier works, Fig. 7b shows good agreement with experimental data not only for one tempera-
ture, but for the range from 323 to 423K. Graphs from Figs. 6 and 7 are constructed by Eqs.
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(3.2), (3.3), (5.5), (5.9) and (5.10) at the following values of model constants: k = 6, c = 26,
u1 = 0.5 (cm

2/kA)u2 , u2 = 3.0, w1 = 0.012K
−1, w2 = 4.102, w3 = 6.0, w4 = 0.12.

7. Conclusion

Relationships to evaluate deformation properties of metals in electric fields are presented in the
framework of the synthetic theory. In contrast to our earlier works, the results obtained for the
steady state creep lead to good agreement with experiments for a wide range of temperatures.
On the base of the relationships derived in terms of the synthetic theory, we have conducted
a thorough analysis of loading surfaces for different cases of irrecoverable deformation coupled
with direct current – plastic deformation and primary/secondary creep. The results obtained,
especially their visualization in the form of loading surfaces, give valuable information for better
understanding of the deformation properties of metals deformed in the electric field.
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