PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impacts of the Petrochemical Industries on Groundwater Quality

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global interest in groundwater resource management is significant, with petrochemical industrialization identified as a potential source of groundwater pollution. Petrochemical industrial processes cause significant impacts on groundwater quality through the discharging of highly contaminated waste with oil and chemicals. This study aims to determine the impact of the heavy petrochemical industrial city of Jubail Saudi Arabia on groundwater quality and identify special sources of pollution using a statistical approach. Samples from 47 groundwater wells were collected and analyzed for 23 indicators, mainly chlorinated hydrocarbons, 1,1-olefin hydrocarbons, vinyl chlorides, 1,1,2-trichloroethylene and chloroform, 1,2-dichloroethylene, chlorobenzene, and benzene. The results were compared with permissible standard limits to identify the level of exceedance. The results showed an exceedance in the concentrations of chlorinated hydrocarbons, total petroleum hydrocarbons, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-trichloroethane, and vinyl chloride more than ten times above the permissible limits of these concentrations. The study revealed the high impact of the petrochemical industries on groundwater quality. Since the current monitoring program depends only on annual sampling of groundwater, there has been a recommendation to install an online groundwater monitoring system to conserve water quality and achieve sustainable management.
Rocznik
Strony
286--299
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Al-Huson University College, Al-Balqa Applied University, Al-Huson, Irbid, Jordan
  • Department of Environmental Engineering, Al-Huson University College, Al-Balqa Applied University, Al-Huson, Irbid, Jordan
  • Department of Civil Engineering, Faculty of Engineering, Ajloun National University, P.O. Box 43, Ajloun 26810, Jordan
  • Department of Nutrition and Food Processing, Al-Huson University College, Al-Balqa Applied University, Al-Huson, Irbid, Jordan
  • Department of Earth and Environmental Sciences, The Hashemite University, Zarqa, Jordan
  • Mechanical Engineering Department, Al-Huson University College, Al-Balqa’ Applied University, P.O. Box 50, Al-Huson 19117, Irbid, Jordan
Bibliografia
  • 1. Zamani M.G., Moridi A., Yazdi J. 2022. Groundwater management in arid and semi-arid regions. Arabian Journal of Geosciences, 15, 362.
  • 2. Al Qatarneh G.N., Al Smadi B., Al-Zboon K., Shatanawi K.M. 2018. Impact of climate change on water resources in Jordan: A case study of Azraq basin. Applied Water Science, 8, 50.
  • 3. Dhaoui O., Agoubi B., Antunes I.M., Tlig L., Kharroubi A. 2023. Groundwater quality for irrigation in an arid region—application of fuzzy logic techniques. Environmental Science and Pollution Research, 30, 29773–29789.
  • 4. Fang Z., Liu Z., Zhao S., Ma Y., Li X., Gao H. 2022. Assessment of groundwater contamination risk in oilfield drilling sites based on groundwater vulnerability. Pollution Source Hazard, and Groundwater Value Function in Yitong County. Water, 14, 628.
  • 5. Pan Y., Peng H., Hou Q., Peng K., Shi H., Wang S., Zhang W., Zeng M., Huang Ch., Xu L., Pi P. 2023. Priority control factors for heavy metal groundwater contamination in peninsula regions based on sourceoriented health risk assessment. Science of The Total Environment, 894, 165062.
  • 6. Radelyuk I., Naseri-Rad M., Hashemi H., Persson M., Berndtsson R., Yelubay M., et al., 2021. Assessing data-scarce contaminated groundwater sites surrounding petrochemical industries. Environmental Earth Sciences, 80, p. 351.
  • 7. Al-Tabal J.A., Al-Zboon K.K. 2012. Suitability assessment of groundwater for irrigation and drinking purpose in the northern region of Jordan. Journal of Environmental Science and Technology. 5, 274–290.
  • 8. Tan Y., Al-Huqail A.A., Chen Q., Sh H., Majdi, J.S. Algethami., Ali H.E. 2022. Analysis of groundwater pollution in a petroleum refinery energy contributed in rock mechanics through ANFIS-AHP. International Journal of Energy Research, 46, 20928–20938,
  • 9. Riccardi C., Di Filippo P., Pomata D., Incoronato F., Di Basilio M., Papini M.P., Spicaglia S. 2008. Characterization and distribution of petroleum hydrocarbons and heavy metals in groundwater from three Italian tank farms. Science of the Total Environment, 393, 50–63.
  • 10. Singh K.P., Malik A., Mohan D., Sinha S. 2004. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) — A case study. Water Research, 38, 3980–3992.
  • 11. Fei-Baffoe B., Badu E., Miezah K., Adjiri Sackey L.N., Sulemana A., Yahans Amuah E.E. 2024. Contamination of groundwater by petroleum hydrocarbons: Impact of fuel stations in residential areas. Heliyon, 10, e25924.
  • 12. Maskooni E.K., Naseri-Rad M., Berndtsson R., Nakagawa K. 2020. Use of Heavy Metal Content and Modified Water Quality Index to Assess Groundwater Quality in a Semiarid Area. Water, 12, 1115.
  • 13. Kovalick W., Montgomery R. 2016. Models and lessons for developing a contaminated site program: An international review. Environmental Technology & Innovation, 7.
  • 14. Naseri-Rad M., Berndtsson R., Persson K.M., Nakagawa K. 2020. INSIDE: An efficient guide for sustainable remediation practice in addressing contaminated soil and groundwater. Science of The Total Environment, 740, 139879.
  • 15. Radelyuk I., Tussupova K., Persson M., Zhapargazinova K., Yelubay M. 2021. Assessment of groundwater safety surrounding contaminated water storage sites using multivariate statistical analysis and Heckman selection model: A case study of Kazakhstan. Environ Geochem Health, 43, 1029–1050.
  • 16. Hosseini K., Taghavi L., Ghasemi S., Dehghani Ghanatghestani M. 2023. Health risk assessment of total petroleum hydrocarbons and heavy metals in groundwater and soils in petrochemical pipelines. International Journal of Environmental Science and Technology, 20, 1411–1420.
  • 17. Poi G., Shahsavari E., Aburto-Medina A., Mok P.C., Ball A.S. 2018. Large scale treatment of total petroleum-hydrocarbon contaminated groundwater using bioaugmentation. J Environ Manage, 214, 157–163.
  • 18. Zhao Y., Lin L., Hong M. 2019. Nitrobenzene contamination of groundwater in a petrochemical industry site. Frontiers of Environmental Science & Engineering, 13, 29.
  • 19. Behl M., Elmore S.A., Malarkey D.E., Hejtmancik M.R., Gerken D.K., Chhabra R.S. 2013. Perinatal toxicity and carcinogenicity studies of styreneacrylonitrile trimer, a ground water contaminant. Toxicology, 314, 84–94.
  • 20. Sun X., Gu X., Lyu S. The performance of chlorobenzene degradation in groundwater: comparison of hydrogen peroxide, nanoscale calcium peroxide and sodium percarbonate activated with ferrous iron. Water Science and Technology, 83, 344–357.
  • 21. Khatri N., Tyagi S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8, 23–39.
  • 22. Chaturvedi A., Bhattacharjee S., Mondal G.C., Kumar V., Singh P.K., Singh A.K. 2019. Exploring new correlation between hazard index and heavy metal pollution index in groundwater. Ecological Indicators, 97, 239–246.
  • 23. Chaturvedi A., Bhattacharjee S., Singh A.K., Kumar V. 2018. A new approach for indexing groundwater heavy metal pollution. Ecological Indicators, 87, 323–331
  • 24. Alharbi B.H., Pasha M.J., Alhudhodi A.H., Alduwais A.K. 2018. Assessment of soil contamination caused by underground fuel leakage from selected gas stations in Riyadh, Saudi Arabia. Soil and Sediment Contamination: An International Journal, 27, 674–691.
  • 25. Kumar B.R. 2022. Case: 10 Jubail II Industrial City. In Project Finance: Structuring, Valuation and Risk Management for Major Projects, ed: Springer, pp. 145–150.
  • 26. Siddiqi Z.M., Saleem M., Basheer C. 2016. Surface water quality in a water run-off canal system: A case study in Jubail Industrial City, Kingdom of Saudi Arabia. Heliyon, 2, e00128.
  • 27. Potable Water. In Handbook of Drinking Water Quality, ed, 1996, pp. 1-17.
  • 28. Khamidov M., Ishchanov J., Hamidov A., Shermatov E., Gafurov Z. 2023. Impact of soil surface temperature on changes in the groundwater level. Water, 15, 3865.
  • 29. Suntharalingam S., Lebbe M., Premathilaka K., Weragoda S., Goonewardene N.P., Weerasooriya R., Vitharana W.A.U., Sandrasegarampillai B. 2019. Conference: Oil and grease contamination of groundwater in Chunnakam area. Jaffna, at: Colombo, Srilanka
  • 30. Han X., Chen X., Ma J., Chen J., Xie B., Yin W., Yang Y., Jia W., Xie D., Xie F. 2022. Discrimination of chemical oxygen demand pollution in surface water based on visible near-infrared spectroscopy. Water, 14, 3003.
  • 31. Zhou Y., Duan N., Wu X., Fang H. 2018. COD discharge limits for urban wastewater treatment plants in china based on statistical methods. Water, 10, 777.
  • 32. Jia X., Jin D., Li C., Lu W. 2019. Characterization and analysis of petrochemical wastewater through particle size distribution, biodegradability, and chemical composition. Chinese Journal of Chemical Engineering, 27, 444–451.
  • 33. Al-Qurnawi W., Alhawi N., Alabadi M., Al-Mohmed R. 2024. Investigation of the hydrocarbon contamination of the Dibdibba aquifer in Al-Zubair area, southern Iraq. IOP Conference Series: Earth and Environmental Science, 1300, 012023.
  • 34. Sridharan M., Senthil Nathan D. 2017. Groundwater quality assessment for domestic and agriculture purposes in Puducherry region. Applied Water Science, 7, 4037–4053.
  • 35. Thomas R.A.P., Riding M.J., Robinson J.D.F., Brown S.J.A., Taylor C. 2022. Distinguishing sources of ammonium in groundwater at former gasworks sites using nitrogen isotopes. Quarterly Journal of Engineering Geology and Hydrogeology. 55(4), doi:10.1144/qjegh2021-139
  • 36. Fang H.-Y., Chou M.-S., Huang C.-W. 1993. Nitrification of ammonia-nitrogen in refinery wastewater. Water Research, 27, 1761–1765.
  • 37. El-Ashtoukhy E.S.Z., El-Taweel Y.A., Abdelwahab O., Nassef E.M. 2013. Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. International Journal of Electrochemical Science, 8, 1534–1550.
  • 38. Spruill T.B. 1988. Use of total organic carbon as an indicator of contamination from an oil refinery, south-central Kansas. Groundwater Monitoring & Remediation, 8, 76–82.
  • 39. Chen R., Li T., Huang C., Yu Y., Zhou L., Hu G., Yang F., Zhang L. 2021. Characteristics and health risks of benzene series and halocarbons near a typical chemical industrial park. Environmental Pollution, 289, 117893
  • 40. Teng Y., Feng D., Song L., Wang J., Li J. 2013. Total petroleum hydrocarbon distribution in soils and groundwater in Songyuan oilfield, Northeast China. Environmental Monitoring and assessment, 185.
  • 41. Adewuyi G.O., Etchie A.T., Etchie O.T. 2012. Evaluation of total petroleum hydrocarbons (TPH) and some related heavy metals in soil and groundwater of Ubeji settlement. Warri Metropolis, Nigeria.
  • 42. Mohd Ali S.A., Payus C., Ali M. 2015. Surface sediment analysis on petroleum hydrocarbon and total organic carbon from coastal area of papar to Tuaran, Sabah. Malaysian Journal of Analytical Sciences, 19, 318–324.
  • 43. Chen H.M., Wu M.T. 2017. Residential exposure to chlorinated hydrocarbons from groundwater contamination and the impairment of renal function– An ecological study. Sci Rep, 7, 40283.
  • 44. Wang F., Song K., He X., Peng Y., Liu D., Liu J., 2021. Identification of groundwater pollution characteristics and health risk assessment of a landfill in a low permeability area. International Journal of Environmental Research and Public Health, 18, 7690.
  • 45. Huang B., Lei C., Wei C., Zeng G. 2014. Chlorinated volatile organic compounds (Cl-VOCs) in environment — sources, potential human health impacts, and current remediation technologies. Environment International, 71, 118–138.
  • 46. Cai P., König R., Boor P.J., Kondraganti S., Kaphalia B.S., Khan M.F., Ansari G.A.S. 2008. Chronic exposure to trichloroethene causes early onset of SLE-like disease in female MRL +/+ mice. Toxicology and Applied Pharmacology, 228, 68–75.
  • 47. Guo Y., Wen Z., Zhang C., Jakada H. 2021. Contamination characteristics of chlorinated hydrocarbons in a fractured karst aquifer using TMVOC and hydro-chemical techniques. Science of The Total Environment. 794, 148717.
  • 48. Chiu W.A., Jinot J., Scott C.S., Makris S.L., Cooper G.S., Dzubow R.C., Bale A.S., Evans M.V., Guyton K.Z., Keshava N., Lipscomb J.C., Jr B.S., Fox J.F., Gwinn M.R., Schaum J., Caldwell1 J.C. 2013. Human health effects of trichloroethylene: Key findings and scientific issues. Environ Health Perspect, 121, 303–311
  • 49. Aliabadi M., Aroujalian A., Raisi A. 2012. Removal of styrene from petrochemical wastewater using pervaporation process. Desalination, 284, 116–121.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db3d4620-09fa-4310-9c56-908d4df15c79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.