PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemical background - an environmental perspective

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
1st Geochemical conference on “Contemporary problems of geochemistry” : Kielce, 27–30 September 2010
Języki publikacji
EN
Abstrakty
EN
This article presents the concept of geochemical background from an environmental perspective. The idea of establishing the typical concentrations of elements in various environmental compartments, proposed by exploratory geochemists almost 50 years ago was important for the detection of anomalous element concentrations, thus providing a basic tool in the search for new mineral deposits. At present, the knowledge of the geochemical background of hazardous elements is essential for: defining pollution, identifying the source of contamination, and for establishing reliable environmental quality criteria for soils, sediments and surface waters. The article presents geochemical methods of evaluation of anthropogenic influence on the environment and discusses the problem of defining and understanding the term “geochemical background” and related terms in environmental sciences. It also briefly presents methods of geochemical background evaluation based on the results of environmental sample analyses. It stresses the role of geochemical background in our understanding of environmental pollution and pollution prevention.
Czasopismo
Rocznik
Strony
7--17
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
  • Jan Kochanowski University, Institute of Chemistry, Geochemistry and the Environment Div., 15G Świętokrzyska St., 25-406 Kielce, Poland
  • Jan Kochanowski University, Institute of Chemistry, Geochemistry and the Environment Div., 15G Świętokrzyska St., 25-406 Kielce, Poland
Bibliografia
  • Bäckström, M., Karlsson, S., Bäckman, L., Folkeson, L., & Lind, B. (2004). Mobilization of heavy metals by deicing salts in a roadside environment. Water Research, 38, 720-732. DOI: 10.1016/j.watres.2003.11.006.
  • Baize, D., & Sterckeman, T. (2001). Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Science of the Total Environment, 264, 127-139. DOI: 10.1016/S0048-9697(00)00615-X.
  • Barth, S. (1998). Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Resources, 32(3), 685-690. DOI: 10.1016/S0043-1354(97)00251-0.
  • Bates, R. L., & Jackson, J. A. (Eds.) (1984). Dictionary of Geological Terms. New York: Anchor Books. A Division of Random House, Inc.
  • Carlon, C. (Ed.) (2007). Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. European Commission. Ispra. Joint Research Centre.
  • Church, S. E. (1993). Geochemical and lead-isotope data from stream and lake sediments, and cores from the upper Arkansas River drainage: Effects of mining at Leadville Colorado on heavy-metal concentration in the Arkansas River. U.S. Geol. Surv. Open-File Report 93-534.
  • Church, S. E., Alpers, C. N., Vaughn, R. B., Briggs, P. H., & Slotton, D. G. (1999). Use of Lead Isotopes as Natural Tracers of Metal Contamination. In G. S. Plumlee & M. J. Logsdon (Eds.). The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Reviews in Economical Geology 6A. (pp. 567-583). Littleton, CO: Society of Economic Geologists.
  • Clarke, F. W. (1889). The relative abundance of the chemical elements. Bulletin of the Philosophical Society of Washington, XI, 131-142.
  • Crommentuijn, T., Sijm, D., De Bruijn, J., van den Hoop, M., van Leeuwen, K., & van de Plassche, E. (2000). Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. Journal of Environmental Management, 60, 121-143. DOI: 10.1006/jema.2000.0354.
  • Galán, E., González, I., & Fernández-Caliani, J. C. (2002). Residual pollution load of soils impacted by the Aznalcóllar (Spain) mining spill after clean-up operations. The Science of the Total Environment, 286(1-3), 167-179. DOI: 10.1016/S0048-9697(01)00974-3.
  • Gałuszka, A. (2006). Methods of determining geochemical background in environmental studies. Problems of Landscape Ecology, XVI/1, 507-519. (in Polish with English summary).
  • Gałuszka, A. (2007a). A review of geochemical background concepts and an example using data from Poland. Environmental Geology, 52, 861-870. DOI: 10.1007/s00254-006-0528-2.
  • Gałuszka, A. (2007b). Different approaches in using and understanding the term “geochemical background” – practical implications for environmental studies. Polish Journal of Environmental Studies, 16(3), 389-395.
  • Górka, M., Jędrysek, M. O., & Strąpoć, D. (2008). Isotopic composition of sulphates from meteoric precipitation as an indicator of pollutant origin in Wrocław (SW Poland). Isotopes in Environmental and Health Studies, 44, 177-188. DOI: 10.1080/10256010802066307.
  • Grobéty, B., Gieré, R., Dietze, V., Stille, P. (2010). Airborne particles in the urban environment. Elements, 6(4), 229-234. DOI: 10.2113/gselements.6.4.229.
  • Håkanson, L. (1980). Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975-1001.
  • Hawkes, H. E, & Webb, J. E. (1962). Geochemistry in mineral exploration. New York: Harper.
  • Horckmans, L., Swennen, R., Deckers, J., & Maquil, R. (2005). Local background concentrations of trace elements in soils: a case study in the Grand Duchy of Luxemburg. Catena, 59, 279-304. DOI: 10.1016/j.catena.2004.09.004.
  • Izbicki, J. A., Ball, J. W., Bullen, T. D., & Sutley, S. J. (2008). Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. Applied Geochemistry, 23, 1325-1352. DOI: 10.1016/j.apgeochem.2007.11.015.
  • Jaakkola, T., Heinonen, O. J., Keinonen, M., Salmi, A., & Miettinen, J. K. (1983). Use of 206Pb/204Pb isotope ratio in lichens, air filter, incinerator ash and gasoline samples as pollution source indicator. International Journal of Mass Spectrometry and Ion Physics, 48, 347-350. DOI: 10.1016/0020-7381(83)87099-5.
  • Kelley, K. D., & Taylor, C. D. (1997). Environmental geochemistry of shale-hosted Ag-Pb-Zn massive sulfide deposits in northwest Alaska: natural background concentrations of metals in water from mineralized areas. Applied Geochemistry, 12, 397-409. DOI: 10.1016/S0883-2927(97)00009-7.
  • Krouse, H. R., & Grinenko, V. A. (Eds.) (1991). Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. New York, ..., Singapore: John Wiley & Sons.
  • Lima, A. (2008). Evaluation of geochemical background at regional and local scales by fractal filtering technique: Case studies in selected Italian areas. In B. De Vivo, H. E. Belkin & A. Lima (Eds.) Environmental Geochemistry. Site characterization, Data Analysis and Case Histories. (pp. 135-152). Amsterdam: Elsevier.
  • Loska, K., Wiechuła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30, 159-165. DOI: 10.1016/S0160-4120(03)00157-0.
  • Manecki, A. (1976). Aeromineralogy - Mineralogy of Atmospheric Dust. Mineralogia Polonica, 7, 91-97.
  • Martínez, J., Llamas, J., de Miguel, E., Rey, J., & Hidalgo, M. C. (2007). Determination of the geochemical background in a metal mining site: example of the mining district of Linares (South Spain). Journal of Geochemical Exploration, 94, 19-29. DOI: 10.1016/j.gexplo.2007.05.001.
  • Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background - can we calculate it? Environmental Geology, 39, 990-1000. DOI: 0.1007/s002549900084.
  • Mudge, S. M. (2008). Environmental forensics and the importance of source identification. In: R. E. Hester & R. M. Harrison. (Eds.) Environmental Forensics (pp. 1-16). Cambridge: Royal Society of Chemistry.
  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108-118.
  • Norrström, A. C. (2005). Metal mobility by de-icing salt from an infiltration trench for highway runoff. Applied Geochemistry, 20, 1907-1919. DOI: 10.1016/j.apgeochem.2005.06.002.
  • Petelet-Giraud, E., Klaver, G., & Negrel, P. (2009). Natural versus anthropogenic sources in the surface- and groundwater dissolved load of the Dommel river (Meuse basin): Constraints by boron and strontium isotopes and gadolinium anomaly. Journal of Hydrology, 369, 336-349. DOI: 10.1016/j.jhydrol.2009.02.029.
  • Philp, R. P. (2007). The emergence of stable isotopes in environmental and forensic geochemistry studies: a review. Environmental Chemistry Letters, 5, 57-66. DOI: 10.1007/s10311-006-0081-y.
  • Portier, K. M. (2001). Statistical issues in assessing anthropogenic background for arsenic. Environmental Forensics, 2, 155-160. DOI: 10.1006/enfo.2001.0051.
  • Reimann, C., & de Caritat, P. (2005). Distinguishing between natural and anthropogenic sources of element in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337, 91-107. DOI: 10.1016/j.scitotenv.2004.06.011.
  • Reimann, C., Filzmoser, P., & Garret, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346, 1-16. DOI: 10.1016/j.scitotenv.2004.11.023.
  • Reimann, C., & Garret, R. G. (2005). Geochemical background – concept and reality. Science of the Total Environment, 350, 12-27. DOI: 10.1016/j.scitotenv.2005.01.047.
  • Rudnick, R.L. & Gao, S. (2003). The Composition of the Continental Crust. In: H. D. Holland & K. K. Turekian. (Eds.) Treatise on Geochemistry. Vol. 3 (pp. 1-64). Oxford: Elsevier-Pergamon.
  • Selinus, O. S., & Esbensen, K. (1995). Separating anthropogenic from natural anomalies in environmental geochemistry. Journal of Geochemical Exploration, 55, 55-66. DOI: 10.1016/0375-6742(95)00034-8.
  • Shazili, N. A. M., Kamaruzzaman, B. Y., Antonina, N. A., Zauyah, S., Bidai, J., Shamsudin, A. A., & Kamil, A. R. (2007). Interpretation of anthropogenic input of metals in the South China Sea bottom sediments of
  • Terengganu (Malaysia) coastline using Al as a reference element. Aquatic Ecosystem Health & Management, 10(1), 47-56. DOI: 10.1080/14634980701201681.
  • Silva, S. R., Ging, P. B., Lee, R. W., Ebbert, J. C., Tesoriero, A. J., & Inkpen E. L. (2002). Forensic applications of nitrogen and oxygen isotopes of nitrate in an urban environment. Environmental Forensics, 3, 125-130. DOI: 10.1006/enfo.2002.0086.
  • Slater, G. F. (2003). Stable isotope forensics – when isotopes work. Environmental Forensics, 4, 13-23. DOI: 10.1080/15275920303485.
  • The regulation of the minister of the environment on the soil quality standards. (2002). Journal of the Acts (Dziennik Ustaw) of September 9, No. 165, item 1359.
  • Tomlinson, D. L., Wilson, J. G. Harris C. R. & Jeffrey D. W. (1980). Problems in the assessments of heavy metal levels in estuaries and formation of a pollution index. Helgol Meeresunters, 33, 566-575.
  • Turekian, K. K. & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72, 175-191.
  • Zalasiewicz, J., Williams, M., Steffen, W., & Crutzen, P. (2010). The New World of the Anthropocene. Environmental Science & Technology, 44(7), 2228-2231. DOI: 10.1021/es903118j.
  • Zillioux, E. J., (2001). Arsenic background definition: introduction and objectives. Environmental Forensics, 2, 115-116. DOI: 10.1006/enfo.2001.0045.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db3cccf1-e237-4a95-8e5a-360482bfd2c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.