PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antybakteryjne właściwości grafenu i jego pochodnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Antibacterial properties of graphene and its derivatives
Języki publikacji
PL
Abstrakty
PL
Praca prezentuje przegląd literatury w zakresie zastosowania grafenu i jego pochodnych do potencjalnej ochrony przed mikroflorą bakteryjną. Poruszono zagadnienia związane z próbą wyjaśnienia mechanizmów oddziaływania grafenu i jego pochodnych: tlenku grafenu (GO) oraz zredukowanego tlenku grafenu (rGO) na komórki bakteryjne. Porównano działanie poszczególnych form węgla na komórki Gram(+) i Gram(-), uwzględniając stężenie preparatów, rodzaj pożywki hodowlanej, a także podłoże, na którym osadzono grafen. Omówiono zagadnienia związane z powstawaniem wolnych form tlenowych (ROS), efekt ostrej krawędzi, tworzenie biofilmu oraz potencjalne zastosowania grafenu jako powłoki antybakteryjnej.
EN
The work presents a literature review on the use of graphene and its derivatives as the potential protection against bacterial microflora. Addressed issues relate to an attempt to explain the mechanisms of impact of graphene and its derivatives: graphene oxide (GO) and reduced graphene oxide (rGO) on the bacterial cells. Interaction of graphene materials (G, GO, rGO) with Gram(+) and Gram(-) were compared with regard to the concentration of the preparations, the nature of the culture medium and surface of graphene deposition. Issues related to the development of reactive oxygen species (ROS) were discussed, the effect of sharp edges of GM’s (nano-knife), biofilm formation and the potential application of graphene in nanomedicine.
Rocznik
Strony
69--84
Opis fizyczny
Bibliogr. 68 poz.
Twórcy
  • Wojskowa Akademia Techniczna, Instytut Optoelektroniki, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
  • Wojskowa Akademia Techniczna, Instytut Optoelektroniki, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • [1] Mattei T.A., Rehman A.A., Technological developments and future perspectives on graphene-based metamaterials: a primer for neurosurgeons, Neurosurgery, 74, 2014, 499-516.
  • [2] Novoselov K., Geim A. et al., Electric field effect in atomically thin carbon films, Science, 306, 2004, 666-669.
  • [3] Park S., Ruoff R.S., Chemical methods for the production of graphenes, Nature Nanotechnology, 2009, 1-8.
  • [4] Smith A.T., LaChance A.M., Zeng S., Liu B., Sun L., Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites, Nano Materials Science, 1, 2019, 31-47.
  • [5] Marcano D.C., Kosynkin D.V., Berlin J.M., et al., Improved Synthesis of Graphene Oxide, ACS Nano 4, 2010, 4806-4814.
  • [6] Shen J., Hu Y., Shi M., Lu Xin., et al., Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets, Chem. Matter, 21, 2009, 3514-3520.
  • [7] Si Y., Samulski E.T., Synthesis of Water Soluble Graphene, Nano Letters, 8, 2008, 1679-1682.
  • [8] Ismael S., Lewis J., Graphene: will it be the future material in orthopaedic and trauma surgery?, Orthopaedic Proceedings, 95-B, 2018, 22.
  • [9] Peleg R., et al., An overview of graphene’s properties, https://www.graphene-info.com/grapheneintroduction, The graphene experts, 2017.
  • [10] Karahan H.E., Wiraja C., Xu C., Wei J., Wang Y., Wang L., Liu F., Chen Y., Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives, Adv Healthcare Materials, 7, 2018, 1-18.
  • [11] Mattei T.A., Rehman A.A., Technological developments and future perspectives on graphene based metamaterials: a primer for neurosurgeons, Neurosurgery, 74, 2014, 499-516.
  • [12] Li J., Wang G., Zhu H., Zhang M., Zheng X., Di Z., Liu X., Wang X., Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer, Scientific Reports, 4, 2014, 1-8.
  • [13] Dimroth P., Kaim G., Matthey U., Crucial role of the membrane potential for ATP synthesis by F(1)F(o)ATP synthases, J. Exp. Biol., 203, 2000, 51-59.
  • [14] Nanda S., Yi D., Kim K., Study of antibacterial mechanism of graphene oxide using Raman spectroscopy, Scientific Reports, 6, 2016, 1-12.
  • [15] Tu Y., Lv M., Xiu P., Huynh T., Zhang M., Castelli M., Liu Z., Huang Q., Fan C., Fang H., Zhou R., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets, Nat Nanotechnol., 8, 2013, 594-601.
  • [16] Liu S., Hu M., Zeng T.H., Wu R., Jiang R., Wei J., Wang L., Kong J., Chen Y., Lateral dimension dependent antibacterial activity of graphene oxide sheets, Langmuir 28, 2012, 12364-72.
  • [17] Chong Y., Ma Y., Shen H., Tu X., Zhou X., Xu J., Dai J., Fan S., Zhang Z., The in vitro and in vivo toxicity of graphene quantum dots, Biomaterials, 35, 2014, 5041-8.
  • [18] Perreault F., de Faria A.F., Nejati S., Elimelech M., Antimicrobial properties of graphene oxide nanosheets: why size matters, ACS Nano, 9, 2015, 7226-36.
  • [19] Kurapati R., Vaidyanathan M., Raichur A.M., Synergistic photothermal antimicrobial therapy using graphene oxide/polymer composite layer-bylayer thin films, RSC Adv., 6, 2016, 39852-60.
  • [20] Mangadlao J.D., Santos C.M., Felipe M.J.L., de Leon A.C.C., Rodrigues D.F. and Advincula R.C., On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films, Chemical Communications, 14, 2015, 2886-9.
  • [21] Hui L., Piao J.G., Auletta J., Hu K., Zhu Y., Meyer T., Liu H. and Yang L., Availability of the basal planes of graphene oxide determines whether it is antibacterial, ACS Appl. Mater. Interfaces, 6, 2014, 13183-90.
  • [22] Aditya S., Varshney M., Nanda S.S., Shin H.J., Kim N., Yi D.K., Chae K-W., Won S.O., Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets, Chemical Physics Letter, 698, 2018, 85-92.
  • [23] Liu S., Zeng Th., Hofman M., Burcombe E., Wei J., Jiang R., Kong J., Chen Y., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano; 5, 2011, 6971-6980.
  • [24] Liu S., Hu M., Zeng T.H., Wu R., Jiang R., Wei J., Wang L., Kong J., Chen Y., Lateral dimension-dependent antibacterial activity of graphene oxide sheets, Langmuir, 28, 2012, 12364-12372.
  • [25] Akhavan O., Choobtashani M., Ghaderi E.J., Protein Degradation and RNA Efflux of Viruses Photocatalyzed by Graphene–Tungsten Oxide Composite Under Visible Light Irradiation, Phys. Chem., 116, 2012, 9653-9659.
  • [26] Perreault F., Tousley M.E., Elimelech M., Thin-Film Composite Polyamide Membranes Functionalized with Biocidal Graphene Oxide Nanosheets, Environ. Sci. Technol. Lett., 1, 2014, 71-76.
  • [27] Yang X., Li Z., Ju E., Ren J., Qu X., Reduced graphene oxide functionalized with a luminescent rare-earth complex for the tracking and photothermal killing of drug-resistant bacteria, Chemistry, 20, 2014, 394-398.
  • [28] Zou X., Zhang L., Wang Z., Luo Y., Mechanisms of the antimicrobial activities of graphene materials, J. Am. Chem. Soc., 138, 2016, 2064-2077.
  • [29] Wei XQ., Hao L.Y., Shao X.R., Zhang Q., Jia X.Q., Zhang Z.R., Lin F.Y., Peng Q., Insight into the interaction of graphene oxide with serum proteins and impact of the degree of reduction and concentration, ACS Appl. Mater. Interfaces, 7, 2015, 13367-13374.
  • [30] Guo Z., Xie C., Zhang P., Zhang J., Wang G., He X., Ma Y., Zhao B., Zhang Z., Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm, Science of total Environment 580, 2017, 1300-1308.
  • [31] Mejías Carpio I.E., Santos C.M., Wei X., Rodrigues D.F., Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms and mammalian cells, Nanoscale, 4, 2012, 4746-4756.
  • [32] Li R., Mansukhani N.D., Guiney L.M., Ji Z., Zhao Y., Chang CH., French C.T., Miller J.F., Hersam M.C., Nel A.E., Xia T., Identification and optimization of carbon radicals and hydrated graphene oxide for ubiquitous antibacterial coatings, ACS Nano; 10, 2016, 10966-10980.
  • [33] Qian W., Qiu J., Su J., Liu X., Minocycline hydrochloride loaded on titanium by graphene oxide: an excellent antibacterial platform with the synergistic effect of contact-killing, Biomaterials Science, 6, 2018, 304-313.
  • [34] Korahan H.E., Wang Y., Li W., Liu F., Wang L., Sui X., Riaza MA., Chen Y., Antimicrobial graphene materials: the interplay of complex materials characteristics and competing mechanisms, Biomater. Sci., 6, 2018, 766-773.
  • [35] Pang L., Dai Ch., Bi L., Guo Z., Fan J., Biosafety and antibacterial ability of graphene and graphene oxide in vitro and in vivo, Nanoscale Research Letters, 12, 2017, 1-9.
  • [36] Trampuz A., Piper K.E., Jacobson M.J, Hanssen AD., Unni K.K., Osmon D.R., Mandrekar J.N., Cockerill F.R., Steckelberg J.M., Greenleaf J.F., Patel R., Sonication of removed hip and knee prostheses for diagnosis of infection, N. Engl. J. Med., 357, 2007, 654-663.
  • [37] Jain A.K., Sinha S., Infected nonunion of the long bones, Clin. Orthop. Relat. Res., 431, 2005, 57-65.
  • [38] Gao Ch., Deng Y., Feng P., Mao Z., Li P., Yang B., Deng J., Cao Y., Shuai C., Peng S., Current progress in bioactive ceramic scaffolds for bone repair and regeneration, Int. J. Mol. Sci., 15, 2014, 4714-4732.
  • [39] Zhou H., Lee J., Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater., 7, 2011, 2769-2781.
  • [40] Talukdar Y., Rashkow J., Lalwani G., Kanakia S., Sitharaman B., The effects of graphene nanostructures on mesenchymal stem cells, Biomaterials, 35, 2014, 4863-4877.
  • [41] Akhavan O., Ghaderi E., Akhavan A., Size-dependent genotoxicity of graphene nanoplatelets in human steam cells, Biomaterials, 33, 2012, 8017-8025.
  • [42] Pelez B., Alexiou C., Alvarez-Puebla R.A., Alves F., Andrews A.M., Ashraf S., Balogh L.P., Ballerini L., Bestetti A., Brendel C., Bosi S., et al. Diverse applications on nanomedicine, ACS Nano., 11, 2017, 2313-2381.
  • [43] Hu W., Peng C., Luo W., Lv M., Li X., Li D., Huang Q., Fan C., Graphene-based antibacterial paper, ACS Nano 4, 2010, 4317-23.
  • [44] Pham V.T., Truong V.K., Quinn M.D., Notley S.M., Guo Y., Baulin V.A., Al Kobaisi M., Crawford R.J., Ivanova E.P., Graphene Induces Formation of Pores That Kill Spherical and Rod Shaped Bacteria, ACS Nano, 9, 2015, 8458-67.
  • [45] Li J., Wang G., Zhu H., Zhang M., Zheng X., Di Z., Liu X., Wang X., Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer, Sci. Rep., 4, 2014, 4359-66.
  • [46] Hui L., Piao J.G., Auletta J., Hu K., Zhu Y., Meyer T., Liu H., Yang L., Availability of the basal planes of graphene oxide determines whether it is antibacterial, ACS Appl. Mater. Interfaces, 6, 2014, 13183-90.
  • [47] Musico Y.L.F., Santos C.M., Dalida M.L.P., Rodrigues D.F., Surface Modification of Membrane Filters Using Graphene and Graphene Oxide-Based Nanomaterials for Bacterial Inactivation and Removal, ACS Sustainable Chem. Eng., 2, 2014, 1559-65.
  • [48] Gallo J., Holinka M., Moucha C.S., Antibacterial surface treatment for orthopaedic implants, Int. J. Mol. Sci., 15, 2014, 13849-13880.
  • [49] Lentino J.R., Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialist, Clin. Infect. Dis. 36, 2003, 1157-1161.
  • [50] Kurtz S.M., Lau E., Watson H., Schmier J.K., Parvizi J., Economic burden of periprosthetic joint infection in the United States, J. Arthroplasty, 27, 2012, 61-65.
  • [51] An Y.H., Friedman R.J., Prevention of sepsis in total joint arthroplasty, J. Hosp. Infect. 33, 1996, 93-108.
  • [52] Illingworth K.D., Mihalko W.M., Parvizi J., Sculco T., McArthur B., el Bitar Y., Saleh K.J., How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: A multicenter approach: AAOS exhibit selection, J. Bone Joint Surg. Am., 95, 8, 2013, e50.
  • [53] Gristina AG., Naylor P., Myrvik Q., Infections from biomaterials and implants: a race for the surface, Med. Prog. Technol., 14, 1988, 205-224.
  • [54] Chen Y., Busscher HJ., van der Mei HC., Norde W., Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy, Appl. Environ. Microbiol., 77, 2011, 5065-5070.
  • [55] Sun H., Gao N., Dong K., Ren J., Qu X., Graphene quantum dots-band-aids used for wound disinfection, ACS Nano, 8, 2014, 6202-6210.
  • [56] Schreml S., Landthaler M., Schäferling M., Babilas P., A new star on the H2O2rizon of wound healing?, Exp. Dermatol., 20, 2011, 229-231.
  • [57] Campoccia D., Montanaro L., Arciola C.R., The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials, 27, 2006, 2331-2339.
  • [58] Xie X., Mao C., Liu X., Zhang Y., Cui Z., Yang X., Yeung K.W.K., Pan H., Chu P.K., Wu S., Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating, ACS Appl. Mater. Interfaces, 9, 2017, 26417-26428.
  • [59] Karahan H.E., Wiraja Ch., Xu Ch., Wei J., Wang Y., Wang L., Liu F., Chen Y., Graphene materials in antimicrobial nanomedicine: current status and future perspectives, Advanced Healthcare Materials, 7, 2018, 1-18.
  • [60] Shih S-J., Chen C.Y., Lin Y.-Ch., Lee J.-Ch., Chung R.-J., Investigation of bioactive and antibacterial effects of graphene oxide-doped bioactive glass, Adv. Powder Technol., 27, 2016, 1013-1020.
  • [61] Podila R., Moore T., Alexis F., Rao A., Graphene coatings for enhanced hemo-compatibility of nitinol stents, RSC Adv., 3, 2013, 1660-1665.
  • [62] Wu M.-C., Deokar A., Liao J.-H., Shih P.-Y., Ling Y.-Ch., Graphene-based photothermal agent for rapid and effective killing of bacteria, ASC Nano., 7, 2013, 1281-1290.
  • [63] Tian T., Shi X., Cheng L., Luo Y., Dong Z., Gong H., Xu L., Zhong Z., Peng R., Liu Z., Graphene based nanocomposite as an effective, multifunctional and recyclable antibacterial agent, ACS Appl. Mater. Interfaces, 6, 2014, 8542-8548.
  • [64] Wang Y., Zhao Q., Han N., Bai L., Li J., Liu J., Che E., Hu L., Zhang Q., Jiang T., Wang S., Mesoporous silica nanoparticles in drug delivery and biomedical applications, Nanomedicine, 26, 2015, 313-327.
  • [65] Marciano F.R., Bonetti L.F., Mangolin J.F., Da-Silva N.S., Trava-Airoldi V.J., Investigation into the antibacterial property and bacterial adhesion of diamond-like carbon films, Vacuum 85, 2011, 662-666.
  • [66] Zhou H., Xu L., Ogino A., Nagatsu M., Investigation into the antibacterial property of carbon films, Diamond Relat. Mater., 17, 2008, 1416-1419.
  • [67] Ruiz O.N., Shiral Fernando K.A., Wang B., Brown N., Luo P.G., McNamara N.D., Vangsness M., Sun Ya-Ping, Bunker C.E., Graphene oxide a nonspecific enhancer of cellular growth, ACS Nano, 5, 2011, 8100-8107.
  • [68] Veerapandian M., Zhang L., Krishnamoorthy K., Yun K., Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials, Nanotechnology, 24, 2013, 395706-395717.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db3a70c7-462b-4de6-be7c-31e6e8c7edcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.