PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Simulation of the Deflagration to Detonation Transition in Granular High-Energy Solid Propellants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes a one-dimensional code developed for analyzing the two-phase deflagration to detonation transition (DDT) phenomenon in granular high-energy solid propellants. The deflagration to detonation transition model was established based on a one-dimensional two-phase reactive flow model involving basic flow conservation equations and constitutive relations. The whole system was solved using a high resolution 5th-order WENO (Weighted Essentially Non-Oscillatory) scheme for spatial discretization, coupled with a 3rd-order TVD Runge-Kutta method for time discretization, to improve the accuracy and prevent excessive dispersion. An inert two-phase shock tube problem was carried out to access the developed code. The DDT process of high-energy solid propellants was simulated and the parameters of detonation pressure, run distance to detonation and time to detonation were calculated. The results show that for a solid propellant bed with solid volume fraction 0.65, the run distance to detonation was about 120 mm, the detonation induced time was 28 μs, and the detonation pressure was 18 GPa. In addition, the effects of solid volume fraction (φs) and pressure exponent (n) on the deflagration to detonation transition were also investigated. The numerical results for the DDT phenomenon are in good agreement with experimental results available in the literature.
Rocznik
Strony
504--519
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081 Beijing, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081 Beijing, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081 Beijing, China
Bibliografia
  • [1] Macek, A. Transition from Deflagration to Detonation in Cast Explosives. J. Chem. Phys. 1959, 31(1), 162-167.
  • [2] Tarver, C.M.; Goodale, T.C.; Shaw, R.; Cowperthwaite, M. Deflagration-to-Detonation Transition Studies for Two Potential Isomeric Cast Primary Explosives. Int. Det. Symp., 6th, Coronado, 1976, 231.
  • [3] Campbell, A.W. Deflagration-to-Detonation in Granular HMX. LANL Report LA-UR 80-2016, 1980.
  • [4] McAfee, J.M.; Asay, B.W.; Bdzil, J.B. Deflagration to Detonation in Granular HMX. Int. Det. Symp., 9th, Portland, 1989.
  • [5] McAfee, J.M.; Asay, B.W.; Bdzil, J.B. Deflagration-to-Detonation in Granular HMX: Ignition, Kinetics, and Shock Formation. Int. Det. Symp., 10th, Boston, 1993.
  • [6] Bernecker, R.R. The Deflagration-to-Detonation Transition Process for High-Energy Propellants – a Review. AIAA J. 1986, 24(1): 82-91.
  • [7] McAfee, J.M. The Deflagration-to-Detonation Transition. In: Shock Wave Science and Technology Reference Library (Asay, B.W., Ed.), Vol. 5, Springer, Heidelberg, 2010, pp. 483-533; ISBN 978-3-540-87952-7.
  • [8] Stewart, D.S.; Asay, B.; Kuldeep, P. Simplified Modeling of Transition to Detonation in Porous Energetic Materials. Phys. Fluids 1994, 6: 2515-2534.
  • [9] Powers, J.M.; Stewart, D.S.; Krier, H. Analysis of Steady Compaction Waves in Porous Materials. J. Appl. Mech. 1989, 56(1): 15-24.
  • [10] Bdzil, J.B.; Son, S. Deflagration-to-Detonation Transition. LANL Report LA-12794-MS, 1994.
  • [11] Asay, B.W.; Son, S.F.; Bdzil, J.B. The Role of Gas Permeation during Convective Burning of Granular Explosives. Int J. Multiphase Flow 1996, 22: 923-952.
  • [12] Baer, M.R.; Nunziato, J.W. A Two-phase Mixture Theory for the Deflagration-to-Detonation Transition (DDT) in Reactive Granular Materials. Int. J. Multiphase Flow 1986, 12(6): 861-889.
  • [13] Baer, M.R.; Gross, R.J.; Nunziato, J.W. An Experimental and Theoretical Study of Deflagration-to-Detonation Transition (DDT) in the Granular Explosive. Combust. Flame 1986, 65: 15-30.
  • [14] Powers, J.M.; Stewart, D. S.; Krier, H. Theory of Two-phase Detonation. Part I: Modeling. Combust. Flame 1990, 80(3): 264-279.
  • [15] Carroll, M.M.; Holt, A.C. Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials. J. Appl. Phys. 1972, 43(4): 1626-1636.
  • [16] Butler, P.B.; Krier, H. Analysis of Deflagration to Detonation Transition in High-Energy Solid Propellants. Combust. Flame 1986, 63(1): 31-48.
  • [17] Narin, B.; Ozyoruk, Y.; Ulas, A. Two Dimensional Numerical Prediction of Deflagration-to-Detonation Transition in Porous Energetic Materials. J. Hazard. Mater. 2014, 273(3): 44-52.
  • [18] Dou, H.S.; Tsai, H.M.; Khoo, B.C.; Qiu, J. Simulations of Detonation Wave Propagation in Rectangular Ducts Using a Three-dimensional WENO Scheme. Combust. Flame 2008, 154(4):644-659.
  • [19] Dou, H.S.; Khoo, B.C. Effect of Initial Disturbance on the Detonation Front Structure. Shock Waves 2010, 20(2): 163-173.
  • [20] Sod, G.A. A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws. J. Comput. Phys. 1978, 27(1):1-31.
  • [21] Gonthier, K.A. Modeling and Analysis of Reactive Compaction for Granular Energetic Solids. Combust. Sci. Technol. 2003, 175(9): 1679-1709.
  • [22] Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction. Springer-Verlag, Berlin/Heidelberg, 2009, pp. 151-162; ISBN 978-3-540-25202-3.
  • [23] Price, D.; Berneck, R.R. Deflagration to Detonation Transition of Porous Explosives. High Dynamic Pressure, Proc., Symp., Paris, 1978, 149-159.
  • [24] Keshavarz, M.H. A Simple Approach for Determining Detonation Velocity of High Explosive at Any Loading Density. J. Hazard. Mater. 2005, 121(1): 31-36.
  • [25] Obmenin, A.V.; Korotkov, A.I.; Sulimov, A.A.; Dubovitskii, V.F. Propagation of Predetonation Regimes in Porous Explosives. Combust. Explos. Shock Waves 1969, 5(4): 317-322.
  • [26] Saenz, J.A.; Stewart, D.S. Modeling Deflagration-to-Detonation Transition in Granular Explosive Pentaerythritol Tetranitrate. J. Appl. Phys. 2008, 104(4): 043519.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db39bed2-44f5-4598-bd17-a7afe630d1d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.