PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of a new type of Flettner rotor in merchant ships

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wind energy is a clean and renewable source of energy. This study seeks to explore the potential for utilising wind power for merchant ships. A new type of Flettner rotor (rotating cylinder) mounted on the superstructure of a ship is proposed and numerically simulated. The construction and installation of the rotating cylinder is designed and a numerical simulation of the ship-mounted cylinder is carried out, using the commercially available CFD code Ansys Fluent to obtain parameters such as lift and drag coefficient of the cylinder in different conditions. Specifically, it is found that the cylinder type superstructure can play a certain role in reducing the effect of friction by comparing traditional and cylindrical superstructures; the rotating cylinder can generate auxiliary thrust for the ship. After analysis, the wind speed around the cylinder and spin ratio will have a direct influence on its thrust effect; there is an inflection point in the lift coefficient with the increase of α; the thrust coefficient (8.63) reaches the maximum environmental wind speed at 10 m/s and spin ratio is 2.5. For the rotating cylinder, the greater the environmental wind, the greater the thrust contribution generated under the same spin ratio conditions. The maximum thrust can reach 750,000 N; the cylinder’s auxiliary propulsion contribution shows a better advantage in α = 2.0. The effective power generated by the cylinder reaches a maximum of 2,240 kW for environmental wind speed = 20 m/s and α = 1.0.
Rocznik
Tom
Strony
28--41
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao, 266061 Shandong China
autor
  • College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao, 266061 Shandong China
autor
  • College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao, 266061 Shandong China
  • School of Aerospace Engineering Tsinghua University Beijing 100084 China
autor
  • College of Electromechanical Engineering Qingdao University of Science and Technology Qingdao, 266061 Shandong China
Bibliografia
  • 1. L. Zhen, Y. W. Wu, S. A. Wang, et al. ‘Green technology adoption for fleet deployment in a shipping network’. Transportation Research Part B: Methodological, 139 (2020), 388-410.
  • 2. A. Halff, L. Younes, T. Boersma. ‘The likely implications of the new IMO standards on the shipping industry’. Energy Policy, 126 (2019), 277–286.
  • 3. Y. P. Yuan, J. X. Wang, X. P. Yan, et al. ‘A review of multienergy hybrid power system for ships’. Renewable and Sustainable Energy Reviews, 132 (2020), 110081.
  • 4. P. Cheng, N. Liang, R. Y. Li, et al. ‘Analysis of Influence of Ship Roll on Ship Power System with Renewable Energy’. Energies 2020, 13, 1, doi:10.3390/en13010001.
  • 5. Y. Y. Xie, W. Q. Guo, Q. W. Wu, et al. ‘Robust MPC-based bidding strategy for wind storage systems in real-time energy and regulation markets’. Electrical Power and Energy Systems, 124 (2021), 106361.
  • 6. Y. Wang. ‘The working principle and practical application of rotor sail’. Shanghai Energy Conservation, 2018 (11), doi:10.13770/j.cnki.issn2095-705x.2018.11.010.
  • 7. L. Talluri, D.K. Nalianda, E. Giuliani. ‘Techno economic and environmental assessment of Flettner rotors for marine propulsion’. Ocean Engineering, 154 (2018), 1-15.
  • 8. K. Roncin, M. Behrel, P. Iachkine, et al. ‘Benchmark Sea Trials on a 6-Meter Boat Powered by Kite’. Applied Science, 2020, 10, 6148; doi:10.3390/app10186148.
  • 9. R. H. Lu and J. W. Ringsberg. ‘Ship energy performance study of three windassisted ship propulsion technologies including a parametric study of the Flettner rotor technology’. Ships and Offshore Structures, doi: 10.1080/17445302.2019.1612544.
  • 10. G. Bordogna, S. Muggiasca, S. Giappino, et al. ‘Experiments on a Flettner rotor at critical and supercritical Reynolds numbers’. Journal of Wind Engineering & Industrial Aerodynamics, 188 (2019), 19-29.
  • 11. A. De Marco, S. Mancini, C. Pensa, et al. ‘Flettner Rotor Concept for Marine Applications: A Systematic Study’. International Journal of Rotating Machinery, doi:10.1155/2016/3458750.
  • 12. A. De Marco, S. Mancini, C. Pensa, et al. ‘Marine application of Flettner rotors: numerical study on a systematic variation of geometric factor by DOE approach,’ in Proceedings of the 6th International Conference on Computational Methods in Marine Engineering (MARINE’15), Rome, Italy, June 2015.
  • 13. A. Thom. ‘Effects of discs on the air forces on a rotating cylinder,’ Reports & Memoranda 1623, Aerospace Research Council, 1934.
  • 14. G. Bordogna, S. Muggiasca, S. Giappino, et al. ‘The effects of the aerodynamic interaction on the performance of two Flettner rotors’. Journal of Wind Engineering & Industrial Aerodynamics, https://doi.org/10.1016/j.jweia.2019.104024.
  • 15. S.J. Karabelas, B.C. Koumroglou, C.D. Argyropoulos, et al. ‘High Reynolds number turbulent flow past a rotating cylinder’. Applied Mathematical Modelling, 36 (2012), 379-398.
  • 16. T. Craft, N. Johnson, B. Launder. ‘Back to the Future? A Re-examination of the Aerodynamics of Flettner-Thom Rotors for Maritime Propulsion’. Flow Turbulence Combust, doi: 10.1007/s10494-013-9486-4.
  • 17. M. Traut, P. Gilbert, C. Walsh, et al. ‘Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes’. Applied Energy, 113 (2014), 362-372.
  • 18. S. Salter, G. Sortino, J. Latham. ‘Sea-going hardware for the cloud albedo method of reversing global warming’. Phil. Trans. R. Soc. A, (2008), 366, 3989-4006, doi:10.1098/ rsta.2008.0136.
  • 19. C. Badalamenti, S. A. Prince. ‘Effects of endplates on a rotating cylinder in crossflow,’ in Proceedings of the 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, USA, August 2008.
  • 20. F. Tillig, J. W. Ringsberg, et al. ‘Design, operation and analysis of wind-assisted cargo ships’. Ocean Engineering, 211 (2020), 107603.
  • 21. X. Y. Lu. ‘Study on aerodynamic Performance of Vertical Magnus Wind Turbine’. University of Xiang Tan, May 2019.
  • 22. A. Sedaghat, I. Samani, M. Ahmadi-Baloutaki, et al. ‘Computational study on novel circulating aerofoils for use in Magnus wind turbine blades’. Energy, 91 (2015), 393-403.
  • 23. A. Sedaghat. ‘Magnus type wind turbines: Prospectus and challenges in design and modelling’. Renewable Energy, 62 (2014), 619-628.
  • 24. J. Seifert. ‘A review of the Magnus effect in aeronautics’. Progress in Aerospace Sciences, 55 (2012), 17-45.
  • 25. X. Y. Liu, Y. X. Wang, J. J. Liang et al. ‘CFD Analysis of Aerodynamic Characteristics of Ship’s Wind-Assisted Rotor Sail. Navigation of China’, doi: 1000-4653 (2019) 04 -0046-05.
  • 26. G. Dong, P. T. Lee. ‘Environmental effects of emission control areas and reduced speed zones on container ship operation’. Journal of Cleaner Production, https://doi.org/10.1016/j. jclepro.2020.122582.
  • 27. N. R. Ammar, I. S. Seddiek. ‘Enhancing energy efficiency for new generations of containerized shipping’. Ocean Engineering, 215 (2020), 107887.
  • 28. D. Wang, P. L.-F. Liu. ‘An ISPH with k–ε closure for simulating turbulence under solitary waves’. Coastal Engineering, 157 (2020), 103657.
  • 29. B. J. Guo, S. Steen. ‘Comparison of numerical methods for wave generation by VOF-based numerical wave tank’. Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. OMAE 2011-49777.
  • 30. D. Moreira, N. Mathias, T. Morais. ‘Dual flapping foil system for propulsion and harnessing wave energy: A 2D parametric study for unaligned foil configurations’. Ocean Engineering, 215 (2020), 107875.
  • 31. M. Terziev, T. Tezdogan, A. Incecik. ‘Modelling the hydrodynamic effect of abrupt water depth changes on a ship travelling in restricted waters using CFD’. Ships and Offshore Structures, doi: 10.1080/17445302.2020.1816731.
  • 32. I. Razgallah, S. Kaidi, H. Smaoui, et al. ‘The impact of free surface modelling on hydrodynamic forces for ship navigating in inland waterways: water depth, drift angle, and ship speed effect’. Journal of Marine Science and Technology, https://doi.org/10.1007/s00773-018-0566-y.
  • 33. D. J. Wang, K. Liu, P. Huo, et al. ‘Motions of an unmanned catamaran ship with fixed tandem hydrofoils in regular head waves’. Journal of Marine Science and Technology, https:// doi.org/10.1007/s00773-018-0583-x.
  • 34. B. S. Zhang, B. W. Song, Z. Y. Mao, et al. ‘Hydrokinetic energy harnessing by spring-mounted oscillators in FIM with different cross sections: From triangle to circle’. Energy, 189 (2019), 116249.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db37f68e-181a-4179-9d8e-f6d5a506d2d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.