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Abstract

The quality of a clustering not only depends on the chosen algorithm and its parameters,
but also on the definition of the similarity of two respective objects in a dataset. Applica-
tions such as clustering of web documents is traditionally built either on textual similarity
measures or on link information. Due to the incompatibility of these two information
spaces, combining these two information sources in one distance measure is a challeng-
ing issue. In this paper, we thus propose a geodesic distance function that combines tra-
ditional similarity measures with link information. In particular, we test the effectiveness
of geodesic distances as similarity measures under the space assumption of spherical ge-
ometry in a 0-sphere. Our proposed distance measure is thus a combination of the cosine
distance of the term-document matrix and some curvature values in the geodesic distance
formula. To estimate these curvature values, we calculate clustering coefficient values
for every document from the link graph of the data set and increase their distinctiveness
by means of a heuristic as these clustering coefficient values are rough estimates of the
curvatures.

To evaluate our work, we perform clustering tests with the k-means algorithm on a
subset of the English Wikipedia hyperlinked data set with both traditional cosine distance
and our proposed geodesic distance. Additionally, taking inspiration from the unified
view of the performance functions of k-means and k-harmonic means, min and harmonic
average of the cosine and geodesic distances are taken in order to construct alternate
distance forms. The effectiveness of our approach is measured by computing micro-
precision values of the clusters based on the provided categorical information of each
article.

1 Introduction

The principal aim of the information retrieval
systems is to retrieve only the relevant documents

from the document collection. In order to determine
the relevance, similarity/distance measures are uti-
lized on the document representations. The repre-
sentations are in terms of some low-level features

– 258



248 S. Tekir, F. Mansmann and D. Keim

that are directly measurable from data. Document
lengths, the frequency of words in documents are
examples of such features.

In the classical IR implementation, feature vec-
tors are formed for documents and distance between
these vectors is calculated to relate them. The or-
dinary distance metric is position-independent in
the sense that if two data points are shifted by the
same amount in one coordinate the distance be-
tween them does not change. In other words, it does
not take into account the topology of the document
space and assumes that the space is flat (zero cur-
vature). A curvature metric can therefore provide
additional information about the data points and is
dependent on the position in the space.

In order to address the document semantics in a
better way; there is a need for a generalization that
captures all the geometric structure of space includ-
ing the notions of distance, angle, volume, and cur-
vature [1]. The formulation of this generalized met-
ric (metric tensor) varies according to peculiarities
of the space. Thus, the distance computation is de-
pendent on the inherent space. This paper proposes
a geodesic distance metric that extends the classi-
cal distance computation with the measurements of
curvatures so that the specificities of the document
space can be reflected in a better way.

The geodesic distance metric provides a way of
combining features, which can be applied to data
sets that offer multiple feature spaces. For our ex-
periments, the selected data set contains linked text
documents on which link and text based features
can be calculated. The text analysis is conducted
using the Vector Space Model (VSM) [2] of infor-
mation retrieval. The term weights are calculated
based on term frequencies plus some normalization
mechanisms such as inverse document frequencies
(idf). The regular cosine distance that is applied to
the tf-idf version of the term-document vectors is
used as the basic similarity measure.

In the computation of the geodesic distances,
the cosine distance is combined with the curvature
measurements. The curvature values are based on
the clustering coefficient values from the link graph
given the fact that the clustering coefficient values
are rough estimates of the curvatures [3].

The importance of the geodesic distance metric
lies in the fact that it utilizes a mathematical cost

function for combining links with the text similar-
ity measures. There exists link-based ranking ap-
proaches as well as retrieval models incorporating
link evidence. However, there is a lack of optimal
cost functions to combine cosine, link indegrees,
PageRank, etc.

The experiments in this paper are conducted
on the Wikipedia XML Corpus [4] English subset.
Wikipedia seems a good selection because it is a
known fact that in contrast to general web links,
Wikipedia links are good indicators of relevance. In
addition to this; in Wikipedia, outlinks and inlinks
are similar in character and both contribute to the
semantic analysis of the documents unlike the Web
in which indegrees have a dominant role in deter-
mining the semantic relatedness [5]. Thus, the clus-
tering coefficient computations that are based on the
undirected link graph of the collection are plausible
choices as link-based features for the fact that there
is symmetry in the semantic nature of Wikipedia (if
A is relevant to B then B is relevant to A, too).

For measuring the effectiveness of the proposed
approach, we use data clustering algorithms. An
overwhelming theme for different data clustering
techniques/algorithms is to convert the objective
into an optimization problem and propose an opti-
mization (performance) function accordingly. The
proposed optimization function is expected to mea-
sure the goodness of the data analysis objective at
hand. Thus, dependable performance functions are
of vital importance in the field.

We are given the Wikipedia categorical infor-
mation as part of the data set. The most common
text clustering algorithm k-means [6] is used for the
tests. The rationale for selecting k-means is two-
fold. First, as we already know the number of cate-
gories to look for in the data set, we easily set the k,
the main argument of the algorithm. Second, there
exists an abstract framework for integrating multi-
ple feature spaces for the k-means algorithm. The
second property can be attributed to the simple but
powerful nature of the k-means performance func-
tion. For practical reasons the algorithms are run on
some subsets of the whole data collection.

The rest of the paper is organized as follows: In
Section 2, we provide some related work to define
the context and give an overview of the state-of-the-
art. In Section 3, we discuss the geometric mean-
ing of the geodesic distance in comparison to the
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that are directly measurable from data. Document
lengths, the frequency of words in documents are
examples of such features.

In the classical IR implementation, feature vec-
tors are formed for documents and distance between
these vectors is calculated to relate them. The or-
dinary distance metric is position-independent in
the sense that if two data points are shifted by the
same amount in one coordinate the distance be-
tween them does not change. In other words, it does
not take into account the topology of the document
space and assumes that the space is flat (zero cur-
vature). A curvature metric can therefore provide
additional information about the data points and is
dependent on the position in the space.

In order to address the document semantics in a
better way; there is a need for a generalization that
captures all the geometric structure of space includ-
ing the notions of distance, angle, volume, and cur-
vature [1]. The formulation of this generalized met-
ric (metric tensor) varies according to peculiarities
of the space. Thus, the distance computation is de-
pendent on the inherent space. This paper proposes
a geodesic distance metric that extends the classi-
cal distance computation with the measurements of
curvatures so that the specificities of the document
space can be reflected in a better way.

The geodesic distance metric provides a way of
combining features, which can be applied to data
sets that offer multiple feature spaces. For our ex-
periments, the selected data set contains linked text
documents on which link and text based features
can be calculated. The text analysis is conducted
using the Vector Space Model (VSM) [2] of infor-
mation retrieval. The term weights are calculated
based on term frequencies plus some normalization
mechanisms such as inverse document frequencies
(idf). The regular cosine distance that is applied to
the tf-idf version of the term-document vectors is
used as the basic similarity measure.

In the computation of the geodesic distances,
the cosine distance is combined with the curvature
measurements. The curvature values are based on
the clustering coefficient values from the link graph
given the fact that the clustering coefficient values
are rough estimates of the curvatures [3].

The importance of the geodesic distance metric
lies in the fact that it utilizes a mathematical cost

function for combining links with the text similar-
ity measures. There exists link-based ranking ap-
proaches as well as retrieval models incorporating
link evidence. However, there is a lack of optimal
cost functions to combine cosine, link indegrees,
PageRank, etc.

The experiments in this paper are conducted
on the Wikipedia XML Corpus [4] English subset.
Wikipedia seems a good selection because it is a
known fact that in contrast to general web links,
Wikipedia links are good indicators of relevance. In
addition to this; in Wikipedia, outlinks and inlinks
are similar in character and both contribute to the
semantic analysis of the documents unlike the Web
in which indegrees have a dominant role in deter-
mining the semantic relatedness [5]. Thus, the clus-
tering coefficient computations that are based on the
undirected link graph of the collection are plausible
choices as link-based features for the fact that there
is symmetry in the semantic nature of Wikipedia (if
A is relevant to B then B is relevant to A, too).

For measuring the effectiveness of the proposed
approach, we use data clustering algorithms. An
overwhelming theme for different data clustering
techniques/algorithms is to convert the objective
into an optimization problem and propose an opti-
mization (performance) function accordingly. The
proposed optimization function is expected to mea-
sure the goodness of the data analysis objective at
hand. Thus, dependable performance functions are
of vital importance in the field.

We are given the Wikipedia categorical infor-
mation as part of the data set. The most common
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existing similarity/dissimilarity measures and give
the calculation scheme. In Section 4, we provide
detailed information about the experimental setup-
data set, algorithms, parameters, evaluation metrics
and depict the experimental results. Finally, we
conclude this paper and raise some issues for future
work in Section 5.

2 Related Work

Ma et al [7] claim that they are the first re-
searchers that use geodesic distance in text min-
ing related research areas. Their work deals with
the query-based sentence retrieval and compares
geodesic with cosine distance in this context. The
method constructs a graph of all sentences includ-
ing the candidate (query) ones. In order to define
the local neighborhood, a threshold variable epsilon
is introduced. If the distance between two sentences
are below the threshold value then a direct link is
established between them. The geodesic distances
are computed over the links by utilizing shortest-
path algorithms on the sentence graph. Resulting
rankings and correct ratio plots for given queries
according to both geodesic distance and cosine are
provided. The results show that for the particular
values of the parameter epsilon the correct ratio val-
ues of the geodesic distance are superior to cosine’s,
for some other range it degenerates the cosine angle
distance.

In hyperbolic IR [8], which is non-Euclidean,
a geometric meaning is introduced to the positions
in space. The query vector is assumed to be at the
center of the hyperbolic sphere and the other docu-
ments are evaluated according to their hyperbolic
distances to the query vector at the center of the
sphere. In short, if a non-Euclidean aspect is to
be introduced to a metric space model, the points
should be specialized. Another important point is
that change of hyperbolic distance according to the
radius of the hyperbolic sphere as a parameter in-
troduces equivalent ranking as traditional similarity
measures plus weighting schemes.

Xiao et al [9] associate with the geodesic a
cost based on length and sectional curvature. The
sectional curvature is determined by the degree to
which the geodesic bends away from the Euclidean
chord. Hence for a geodesic in space, the sectional
curvature can be estimated easily if the Euclidean

and geodesic distances are known. Put it another
way if the Euclidean distance and sectional curva-
ture values are known, geodesic distances can be
easily computed. Lou [3] states that clustering co-
efficient values are rough estimates of the sectional
curvatures. Getting the sectional curvature values
from the link graph, taking cosine from the term-
document matrix, the geodesic distance computa-
tion can be easily adapted to the text documents
with links.

In PageRank [10], global link structure of the
document set is utilized to calculate the ranks of the
documents. The authority concept is introduced in
HITS [11] to determine the importance of the doc-
uments. An outlink from a source document to a
target one means that the source gives some au-
thority to the target. Additionally, it is also critical
from whom you get authority. Therefore, there are
a set of hub documents from which having inlinks
is more valuable. This hub-authority pattern is the
key idea and applied in a local context after filtering
out documents by text-based queries.

Language models provide mechanisms to uti-
lize link evidences along with the text content
scores. The experimental results of Kamps and
Koolen [5] show that local degree priors are bet-
ter than the global degree priors and weighted lo-
cal/global priors are even more helpful. Thus, the
proposed approach is plausible as it presents a com-
promise between global and local by evaluating lo-
cal connectivity on the global link graph.

Strehl et al [12] provide a framework for eval-
uating the impact of similarity measures on clus-
tering web pages. In this work, the fundamental
similarity measures are discussed along with their
geometric interpretation. The clustering algorithms
that are better suited to term-document matrix based
text data are determined and the existing similar-
ity/distance measures’ performance with these al-
gorithms are stated.

Oikonomakou and Vazirgiannis [13] review
web document clustering approaches. They clas-
sify the existing algorithms according to character-
istics or features that are used. The processed fea-
tures in the web context are text and/or link-based
features. Thus; text-based, link-based, and hybrid
approaches exist for web document clustering. This
work proposes a hybrid approach for this purpose.
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In their work which combines the link-based
measures with the content-based classifiers, Calado
et al [14] state that the effectiveness of the com-
bination approach may depend on the importance
given to each of the sources of evidence to be com-
bined. More weight should be given to those that
provide more reliable information. They recognize
finding the ideal weights for each of the evidences
to be combined as the fundamental problem. They
set their objective as pursuing methods to automat-
ically determine such weights and alternative ways
to combine link-based and content-based evidences.

Yang [15] points out that there is no unanim-
ity in the research findings related to link analysis
and/or fusion methods. Some claim that combin-
ing results of various retrieval methods is benefi-
cial to retrieval performance, others’ results state
that fusion in general seemed to decrease retrieval
performance. The main question according to Yang
is finding out the reason of the general failure of
the fusion may be due to the characteristics of test
collections, failings of link analysis, inadequacies
of fusion formula, or combinations of all or any
of the above. He believes the future fusion efforts
should focus on discovering the fusion formula that
can best realize the fusion potential of combining
diverse retrieval methods.

In this work, we attempt to use geodesic dis-
tances to better address the semantics of linked
text documents. In other words, geodesic distance
formula is proposed as a way of combining text-
based and linked-based features. This paper is an
extended version of the SSCI CIDM 2011 paper
[16]. Our extensions include the evaluation of k-
harmonic means algorithm to test the effect of ini-
tialization in the precision results of cosine and
geodesic in k-means algorithm. Moreover, an al-
ternate distance out of cosine and geodesic is calcu-
lated by taking the minimum and harmonic average
of the given distances.

3 Geodesic Distance

The distinguishing property of the proposed
geodesic distance is that local curvature values
are considered in the calculation of the distance
between the objects. The intuition behind the
approach comes from the Riemannian geometry
where a local curvature of uniform sign across the

manifold implies strong global properties. Thus, we
take into consideration the sign of the curvature in
the algorithm and are in the pursuit of such global
behaviors.

This intuition in mind, we come up with a cal-
culation scheme for geodesic distance. The pro-
posed scheme is based on the relationship between
Euclidean and geodesic distances on the unit cir-
cle as shown in Figure 1. In order to introduce
the geodesic similarity measure for the linked text
documents, the formula is formed using the rela-
tionship between Euclidean and geodesic distances
on the unit circle as shown in Figure 1. The line
length between two points on a unit circle repre-
sents the Euclidean distance while the arc length
between those points represents the geodesic one.

figure1.jpg

Figure 1. Euclidean and geodesic distances on a
circle.

The line length is computed using the respective
triangle and can be stated as follows:

dE(u,v) = 2r sinθ (1)

The arc length is given by the following formula:

dg(u,v) = 2rθ (2)

The sine in the Euclidean distance formula can be
approximated using the Maclaurin series:

dE(u,v) = 2r(θ− 1
6

θ3 + ...) (3)

Substituting for θ obtained from the geodesic dis-
tance, we have

dE(u,v) = dg(u,v)−
d3

g(u,v)
24r2 (4)

u v

Geodesic distance
Euclidean distance

2θr
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Finally, radius is represented in terms of the curva-
ture of the circle as follows;

r =
1
κ

(5)

and the resulting equation is solved for the geodesic
distance.

dg(u,v)3 −24
1
κ2 dg(u,v)+24

1
κ2 dE(u,v) = 0 (6)

In this equation, the parameters are depen-
dent on κ and dE(u,v) values respectively. Thus,
geodesic distances can be calculated in terms of κ
curvature values and dE(u,v) Euclidean distances.

As we work with linked text documents in our
context, we compute the clustering coefficient val-
ues from the link graph to substitute for κ curvature
value and replace dE(u,v) Euclidean distance by the
cosine text similarity measure.

The Maclaurin series expansion in equation 3
can be extended by one more term such as the fol-
lowing:

dE(u,v) = 2r(θ− 1
6

θ3 +
1

120
θ5...) (7)

Again by substituting for θ obtained from the
geodesic distance, the equation becomes:

dE(u,v) = dg(u,v)−
d3

g(u,v)
24r2 +

d5
g(u,v)

1920r4 (8)

Lastly, radius is replaced by the curvature
equivalent and the following quintic equation is ob-
tained:

d5
g(u,v)−

80
κ2 d3

g(u,v)+
1920

κ4 dg(u,v)−
1920

κ4 dE(u,v)

=0 (9)

The clustering coefficient is defined as Ci =
2n/(ki(ki − 1)), where n denotes the number of di-
rect links connecting the ki nearest neighbors of
node i [17]. It is the proportion of links between
the vertices within its neighborhood divided by the
number of links that could possibly exist between

them. The coefficient represents the local connec-
tivity of a document by giving a measure of the de-
gree of interconnectedness in the neighborhood of a
node. A node whose neighbors are all connected to
each other has C = 1, whereas a node with no links
between its neighbors has C = 0.

The clustering coefficient provides an approx-
imation of the scalar curvature in the sense that
C = 0 implies that the scalar curvature at that ver-
tex is negative, while C = 1 means that the scalar
curvature is positive, with C = 1/2 the borderline
case of vanishing scalar curvature. In our case, each
document is thus assigned one clustering coefficient
value.

The geodesic distance equation given in equa-
tion 6 is a special cubic equation in which the co-
efficient of the squared term is zero. In this cubic
form there are two complex roots and one real root
and the average of the roots of the equation is zero.
For solving the equation Cardano’s method for cu-
bics is utilized [18]. In our experiments, the real
root is used as the geodesic distance. The quintic
geodesic distance equation, on the other hand, can
be solved numerically by Newton’s method.

Geodesic distance can be seen as a weighted
distortion measure in the clustering context in that
the weights are taken from the link graph and the
cosine distance is used as a base distortion measure.
Distortion measures are used to evaluate the results
of the clustering along with the ground truth cate-
gorization. The weighted distortion measures are
defined as

Dα(x,x′) =
m

∑
l=1

αlDl(Fl,F ′
l ) (10)

where D is the distortion measure, α the weight, x
the cluster set, x′ the category set, and Fl and F ′

l lth
feature vectors in the cluster and category sets re-
spectively. The vector of weights is called feature
weighting.

Document-cluster set membership and
document-category set membership matrices are
shown in Table 1. At the last row, the correspond-
ing feature vectors are depicted.

Distortion measures should be utilized in a way
that within category distances must be smaller. In
the k-means algorithm, it means that document to
cluster centroid distances must be smaller that is
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Table 1. The Feature Weighting for Cluster and Category Sets Respectively

Cluster Set Category Set
x1 x2 ... xm x′1 x′2 ... x′m

d1 w11 w12 ... w1m d1 w11 w12 ... w1m

d2 w21 w22 ... w2m d2 w21 w22 ... w2m

: : : ... : : : : ... :
dn wn1 wn2 ... wnm dn wn1 wn2 ... wnm

F1 F2 ... Fm F ′
1 F ′

2 ... F ′
m

Table 2. Link Related Statistics of the Wikipedia XML Corpus

min max mean median stdev
indegree 0 74950 20.9016 4 289.0161
outdegree 0 5176 20.9016 12 37.3416

ccoef 0 1 0.2493 0.2 0.1875

k disjoint clusters π†
1,π

†
2, ...,π

†
k are generated in the

manner to minimize the objective function which is
given below:

{π†
u}k

u=1 = argmin
{πu}k

u=1

(
k

∑
u=1

∑
x∈πu

Dα(x,cu)) (11)

cu thereby denotes the cluster centroids vector.

4 Experimental Evaluation

The experiments are conducted on the
Wikipedia XML Corpus [4], which is composed
of hyperlinked Wikipedia articles. Two category
files are also included in the data set. One contains
id document, id category pairs and the other lists
the category names for the defined category ids. In
total, there are 659,388 documents in 72 English
portal categories in the collection. In Table 2, link
related statistics (indegree, outdegree, and cluster-
ing coefficient) of the data set are provided:

Link related statistics say that the indegrees fol-
low a power-law distribution and the clustering co-
efficient values have a tendency to be smaller than
0.5, which means that the curvature is mainly nega-
tive in the inherent document space.

We randomly selected 10 categories to test our
approach. In Table 3 you find the selected cate-
gory names along with the corresponding document
counts.

The clustering coefficient values are calculated
based on the global link graph rather than the link
graph for the selected categories because the clus-
tering coefficient values begin to converge when the
node count increases. In fact, you cannot get clus-
tering coefficient values other than NaN using the
category link graphs as in-category links are quite
rare. As for the text part, each document is con-
sidered as a multi-dimensional vector and bag-of-
words approach with tf-idf is utilized to form final
document vectors. In the experimental scenario,
as we deal with high dimensional data, clustering
algorithms that have to face the curse of dimension-
ality would not fit the scheme. Thus, the popular
k-means algorithm has been chosen. k-means is
a good choice because we use two feature sets,
namely a) curvature values and b) term-document
vectors and there exists an abstract framework for
integrating multiple feature spaces in the k-means
algorithm [19].
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words approach with tf-idf is utilized to form final
document vectors. In the experimental scenario,
as we deal with high dimensional data, clustering
algorithms that have to face the curse of dimension-
ality would not fit the scheme. Thus, the popular
k-means algorithm has been chosen. k-means is
a good choice because we use two feature sets,
namely a) curvature values and b) term-document
vectors and there exists an abstract framework for
integrating multiple feature spaces in the k-means
algorithm [19].
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Table 3. Selected Categories with Size

Category Name Size
Bangladesh 393
Colombia 304
Finland 1887

Hong Kong 11056
Morocco 230

Netherlands 1350
New Zealand 2393

Romania 1340
Uganda 232

Venezuela 569
Total 19754

The feature combination is done using a math-
ematical function to compute geodesic distances
by exploiting both textual information and the link
topology. In our approach, we calculate the clus-
tering coefficient values using the whole adjacency
matrix of the data set and save these values along
with the belonging document ids. As the clustering
coefficient values are rough estimates of the curva-
tures, simple heuristics are applied to them in order
to increase their distinctiveness. Algorithm 1 de-
tails the heuristic we use to generate the curvature
values.

The clustering coefficient values of the docu-
ments in the collection are mainly negative with a
mean of 0.2. This means that the documents reside
in a hyperbolic space. In the heuristic defined in
the generateCurvature algorithm it is assumed that
for negative curvature values which are close to 0.5
(zero curvature), distortion should be greater than
for values that are far from 0.5. Thus, 1 is added
to the negative curvature values in order to arrange
the distortion accordingly. This is consistent with
the graph of the distortion of embedding the Inter-
net as a function of the curvature of the embedding
space given by [20] in Figure 2. When it comes to
positive curvatures, their ordering is preserved and
their effect on the centroid curvature is weakened
by making a subtraction.

figure2.jpg

Figure 2. The distortion of embedding the internet
in dimension two as a function of the curvature of

the embedding space [20].

After generating the curvature values we need
to compute the average of them in order to repre-
sent the curvature of the centroids in the k-means
clustering algorithm. The centroid curvature is cal-
culated by taking the average of the individual cur-
vature values belonging to the documents that are
classified around the same cluster centroid. In this
computation, we disregard the NaN values, which
are quite rare.

In the experiments, k-means with cosine sim-
ilarity measure is compared against the k-means
with geodesic similarity measure. In order to have
a fair comparison we fix the initial cluster assign-
ments. In the cosine case, we run k-means with no
initial cluster assignments since the code randomly
determines the initial centroids. In the geodesic
case, we use the same initial centroids from the co-
sine case in order to see the effect precisely. In
short, in every run the cosine and geodesic share the
same initial cluster assignments. However, the ini-
tial cluster assignments differ among different runs.
We run the experiments 10 times.

We set the number of clusters parameter k as
twice the number of categories in order to see the
effect more clearly. In the same way, Strehl et al.
[12] choose clusters that are twice the number of
categories and explain that this setting provides the
more natural number of clusters as indicated by
preliminary runs and visualization.

The clustering results are evaluated using the
metrics rand index [21] and adjusted rand index
(AR) that are pair-counting based as well as mutual
information [22] [12] and normalized mutual in-
formation (NMI), which are information-theoretic
measures. In particular, the k-means clustering re-

textual information and the link topology. In our approach,
we calculate the clustering coefficient values using the whole
adjacency matrix of the data set and save these values along
with the belonging document ids. As the clustering coefficient
values are rough estimates of the curvatures, simple heuristics
are applied to them in order to increase their distinctiveness.
Algorithm 1 details the heuristic we use to generate the
curvature values.

Algorithm 1 generateCurvature algorithm.
1: ccoef : clustering coefficient value
2: if ccoef 〉 0.5 then � Curvature is positive?
3: ccoef=ccoef -0.5
4: else
5: ccoef=ccoef+1
6: end if

The clustering coefficient values of the documents in the
collection are mainly negative with a mean of 0.2. This
means that the documents reside in a hyperbolic space. In
the heuristic defined in the generateCurvature algorithm it is
assumed that for negative curvature values which are close
to 0.5 (zero curvature), distortion should be greater than for
values that are far from 0.5. Thus, 1 is added to the negative
curvature values in order to arrange the distortion accordingly.
This is consistent with the graph of the distortion of embedding
the Internet as a function of the curvature of the embedding
space given by [20] in Figure 2. When it comes to positive
curvatures, their ordering is preserved and their effect on the
centroid curvature is weakened by making a subtraction.

Fig. 2. The distortion of embedding the internet in dimension two as a
function of the curvature of the embedding space [20].

After generating the curvature values we need to compute
the average of them in order to represent the curvature of the
centroids in the k-means clustering algorithm. The centroid
curvature is calculated by taking the average of the individual
curvature values belonging to the documents that are classified
around the same cluster centroid. In this computation, we
disregard the NaN values, which are quite rare.

In the experiments, k-means with cosine similarity measure
is compared against the k-means with geodesic similarity
measure. In order to have a fair comparison we fix the
initial cluster assignments. In the cosine case, we run k-means
with no initial cluster assignments since the code randomly

determines the initial centroids. In the geodesic case, we use
the same initial centroids from the cosine case in order to
see the effect precisely. In short, in every run the cosine and
geodesic share the same initial cluster assignments. However,
the initial cluster assignments differ among different runs. We
run the experiments 10 times.

We set the number of clusters parameter k as twice the
number of categories in order to see the effect more clearly.
In the same way, Strehl et al. [12] choose clusters that are
twice the number of categories and explain that this setting
provides the more natural number of clusters as indicated by
preliminary runs and visualization.

The clustering results are evaluated using the metrics rand
index [21] and adjusted rand index (AR) that are pair-counting
based as well as mutual information [22] [12] and normalized
mutual information (NMI), which are information-theoretic
measures. In particular, the k-means clustering results are
evaluated according to the normalized versions of van Dongen,
mutual information and rand index criteria which are stated as
the right measures for the algorithm by Wu et al [23]. In the
computation of these specified clustering metrics we need the
category labels vector and the cluster labels vector as input.
As we set the number of clusters for the k-means algorithm
to twice the number of categories, while category labels vary
between 0 and n, cluster labels have range 0 to 2n. In other
words we end up with a contingency table which has n rows
(categories) and 2*n columns (clusters). The approach to be
taken at this stage to calculate the evaluation metrics for the
clustering is complicated. The difficulty lies in determining the
criterion to select the n clusters out of 2*n. If you ignore this
varying range problem and calculate the metrics accordingly,
the clustering quality suffers. If you take the columns (clusters)
that have the highest intersection with the categories, it is not
fair because in one case the second largest group can be very
close in size to the first one whereas in others the gap can be
quite big.

The intersection among the selected categories (documents
that belong to more than one category) form a small set thus
the effect on the clustering can be ignored.

In the evaluation part, we calculate the precision numbers
in order to measure the overlap between a given clustering
and the ground truth classification. In our case the ground
truth classification is given as Wikipedia categories. We com-
paratively analyze the clustering results for the k-means with
cosine and k-means with geodesic with the real categories.
The precision computations are done based on the methods
provided by [19]. Their work establishes the framework for
integrating multiple feature spaces in the k-means clustering
algorithm. Thus, valid comparisons between single feature
spaces and multiple feature spaces in the k-means case can
be best accomplished using the framework’s defined precision
metrics rather than the traditional clustering metrics for the
k-means namely NMI and AR. In our experiments, we also
calculated NMI and AR values. The results verify that the
order of the NMI and AR values in the cosine and geodesic
cases is in accordance with the order of the defined precision
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sults are evaluated according to the normalized ver-
sions of van Dongen, mutual information and rand
index criteria which are stated as the right measures
for the algorithm by Wu et al [23]. In the compu-
tation of these specified clustering metrics we need
the category labels vector and the cluster labels vec-
tor as input. As we set the number of clusters for
the k-means algorithm to twice the number of cat-
egories, while category labels vary between 0 and
n, cluster labels have range 0 to 2n. In other words
we end up with a contingency table which has n
rows (categories) and 2*n columns (clusters). The
approach to be taken at this stage to calculate the
evaluation metrics for the clustering is complicated.
The difficulty lies in determining the criterion to se-
lect the n clusters out of 2*n. If you ignore this
varying range problem and calculate the metrics ac-
cordingly, the clustering quality suffers. If you take
the columns (clusters) that have the highest inter-
section with the categories, it is not fair because in
one case the second largest group can be very close
in size to the first one whereas in others the gap can
be quite big.

The intersection among the selected categories
(documents that belong to more than one category)
form a small set thus the effect on the clustering can
be ignored.

In the evaluation part, we calculate the preci-
sion numbers in order to measure the overlap be-
tween a given clustering and the ground truth clas-
sification. In our case the ground truth classifica-
tion is given as Wikipedia categories. We com-
paratively analyze the clustering results for the k-
means with cosine and k-means with geodesic with
the real categories. The precision computations are
done based on the methods provided by [19]. Their
work establishes the framework for integrating mul-
tiple feature spaces in the k-means clustering al-
gorithm. Thus, valid comparisons between single
feature spaces and multiple feature spaces in the
k-means case can be best accomplished using the
framework’s defined precision metrics rather than
the traditional clustering metrics for the k-means
namely NMI and AR. In our experiments, we also
calculated NMI and AR values. The results verify
that the order of the NMI and AR values in the co-
sine and geodesic cases is in accordance with the
order of the defined precision metric values in both
cases for every run.

To meaningfully define precision, we convert
the clusterings into classification using the follow-
ing simple rule: identify each cluster with the class
that has the largest overlap with the cluster, and as-
sign every element in that cluster to the found class.
The rule allows multiple clusters to be assigned to
a single class, but never assigns a single cluster to
multiple classes.

Suppose there are c classes {ωi}c
i=1 = 1 in the

ground truth classification of n objects. Precision is
defined using the following equations where ai de-
notes the number of data objects that are correctly
assigned to the class ωi, bi the documents that are
incorrectly assigned to the class ωi, and ci denotes
the documents that are incorrectly rejected from the
class ωi.

pi =
ai

ai +bi
and ri =

ai

ai + ci
, 1 ≤ i ≤ n (12)

The precision is defined per class. In order to cap-
ture the performance averages across classes micro-
precision (micro-p) values are calculated as fol-
lows:

micro− p =
1
n

c

∑
i=1

ai (13)

The experimental results (micro-precision val-
ues) are shown in Table 4. The first column lists the
values belonging to k-means with cosine, the sec-
ond column k-means with geodesic, the third col-
umn k-means with a geodesic derivative, the fourth,
min of cosine-geodesic pair, and finally the last
one harmonic mean of cosine-geodesic pair respec-
tively. The difference between the two geodesic ap-
proaches is in the calculation of the average cen-
troid curvature values. The former one sums the
curvature values without paying attention to the
signs of the curvature. In the latter one the sum-
mation operation takes into account the signs that is
the positive ones are added to the sum whereas the
negative values are subtracted from it.

k-means’ performance function aims at mini-
mizing the total within-cluster variance by the way
of minimizing the total mean squared distance for
each point and the closest centroid. The closest cen-
troid assignment of a point implies that the algo-
rithm implicitly assigns every point to exactly one
cluster, imposing a hard membership for points. k-
harmonic means [24], on the other hand, uses the
distances to all centroids in order to assign weights
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sults are evaluated according to the normalized ver-
sions of van Dongen, mutual information and rand
index criteria which are stated as the right measures
for the algorithm by Wu et al [23]. In the compu-
tation of these specified clustering metrics we need
the category labels vector and the cluster labels vec-
tor as input. As we set the number of clusters for
the k-means algorithm to twice the number of cat-
egories, while category labels vary between 0 and
n, cluster labels have range 0 to 2n. In other words
we end up with a contingency table which has n
rows (categories) and 2*n columns (clusters). The
approach to be taken at this stage to calculate the
evaluation metrics for the clustering is complicated.
The difficulty lies in determining the criterion to se-
lect the n clusters out of 2*n. If you ignore this
varying range problem and calculate the metrics ac-
cordingly, the clustering quality suffers. If you take
the columns (clusters) that have the highest inter-
section with the categories, it is not fair because in
one case the second largest group can be very close
in size to the first one whereas in others the gap can
be quite big.

The intersection among the selected categories
(documents that belong to more than one category)
form a small set thus the effect on the clustering can
be ignored.

In the evaluation part, we calculate the preci-
sion numbers in order to measure the overlap be-
tween a given clustering and the ground truth clas-
sification. In our case the ground truth classifica-
tion is given as Wikipedia categories. We com-
paratively analyze the clustering results for the k-
means with cosine and k-means with geodesic with
the real categories. The precision computations are
done based on the methods provided by [19]. Their
work establishes the framework for integrating mul-
tiple feature spaces in the k-means clustering al-
gorithm. Thus, valid comparisons between single
feature spaces and multiple feature spaces in the
k-means case can be best accomplished using the
framework’s defined precision metrics rather than
the traditional clustering metrics for the k-means
namely NMI and AR. In our experiments, we also
calculated NMI and AR values. The results verify
that the order of the NMI and AR values in the co-
sine and geodesic cases is in accordance with the
order of the defined precision metric values in both
cases for every run.

To meaningfully define precision, we convert
the clusterings into classification using the follow-
ing simple rule: identify each cluster with the class
that has the largest overlap with the cluster, and as-
sign every element in that cluster to the found class.
The rule allows multiple clusters to be assigned to
a single class, but never assigns a single cluster to
multiple classes.

Suppose there are c classes {ωi}c
i=1 = 1 in the

ground truth classification of n objects. Precision is
defined using the following equations where ai de-
notes the number of data objects that are correctly
assigned to the class ωi, bi the documents that are
incorrectly assigned to the class ωi, and ci denotes
the documents that are incorrectly rejected from the
class ωi.

pi =
ai

ai +bi
and ri =

ai

ai + ci
, 1 ≤ i ≤ n (12)

The precision is defined per class. In order to cap-
ture the performance averages across classes micro-
precision (micro-p) values are calculated as fol-
lows:

micro− p =
1
n

c

∑
i=1

ai (13)

The experimental results (micro-precision val-
ues) are shown in Table 4. The first column lists the
values belonging to k-means with cosine, the sec-
ond column k-means with geodesic, the third col-
umn k-means with a geodesic derivative, the fourth,
min of cosine-geodesic pair, and finally the last
one harmonic mean of cosine-geodesic pair respec-
tively. The difference between the two geodesic ap-
proaches is in the calculation of the average cen-
troid curvature values. The former one sums the
curvature values without paying attention to the
signs of the curvature. In the latter one the sum-
mation operation takes into account the signs that is
the positive ones are added to the sum whereas the
negative values are subtracted from it.

k-means’ performance function aims at mini-
mizing the total within-cluster variance by the way
of minimizing the total mean squared distance for
each point and the closest centroid. The closest cen-
troid assignment of a point implies that the algo-
rithm implicitly assigns every point to exactly one
cluster, imposing a hard membership for points. k-
harmonic means [24], on the other hand, uses the
distances to all centroids in order to assign weights
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Table 4. The micro-p values with the clusterings with k-means cosine, geodesic, geodesic derivative, first
twos’ min and harmonic means respectively. The corresponding mean and standard deviation values are

added as the last two rows.

run � cosine geodesic geodesic-derivative min harmonic
1 0,727448 0,737775 0,743191 0,732712 0,737268
2 0,72355 0,733117 0,738585 0,709122 0,729473
3 0,718285 0,724208 0,724866 0,721120 0,721930
4 0,738585 0,74552 0,740812 0,746178 0,746229
5 0,662752 0,676774 0,684823 0,670902 0,673534
6 0,700618 0,706135 0,696973 0,707958 0,713779
7 0,702288 0,705528 0,703756 0,701023 0,698289
8 0,678394 0,683912 0,685633 0,679660 0,684722
9 0,728612 0,728663 0,720462 0,730687 0,728106
10 0,724309 0,708565 0,690088 0,715298 0,706439
mean 0,7105 0,7150 0,7129 0,7115 0,7140
stdv 0,0243 0,0228 0,0234 0,0234 0,0233

to the points and before the final convergence phase
there’s no assignment to any particular clusters.
Therefore, k-harmonic means utilizes soft member-
ship and has the capability of moving points to other
cluster centers in the case of high locally dense data
points and centers [25].

Inherently, k-means has sensitivity to initializa-
tion and k-harmonic means is said to be essentially
insensitive to initialization due to the above men-
tioned capability over k-means. Therefore, it’s a
good starting point to investigate the effect of ini-
tialization on the k-means algorithm in pursuing
the factors related to the performance of geodesic
over cosine in the experiments. Both cosine and
geodesic approaches were run on a k-harmonic
means implementation, but no distinguishing dif-
ference was observed. Then the effect of initializa-
tion can be disregarded in comparing the effective-
ness of cosine and geodesic similarity measures in
k-means clustering applications.

k-means’ performance function given in equa-
tion 11 can be rewritten as:

{π†
u}k

u=1 =
N

∑
i=1

min(|xi − cu|2 |u = 1, ...,k) (14)

This new representation is the result of a uni-
fied view of the k-means and k-harmonic means’
performance functions [24]. The part that comes
right after the min, represents the distance function.

The min assigns the documents to clusters accord-
ing to minimum distances. In the k-harmonic case,
the harmonic averages (HA) of the distances from
each data point to the centers are computed as com-
ponents to the relative performance function.

Taking inspiration from this rewritten form of
the performance function, the min and HA can be
evaluated as operators that are applied to the suc-
ceeding distance functions. In the context of this
paper, these operators can be moved inside and be
applied directly to the distance function part as well.
As we have cosine and geodesic distances in the ex-
perimental setting, by calculating the minimum and
harmonic averages of the two distances, an alter-
nate distance form can be generated to be useful.
In Table 4, the calculations for both of these vari-
ations are listed as the fourth and fifth columns re-
spectively.

In order to compare the effects of the differ-
ent distance measures, we perform the nonpara-
metric Friedman’s test. The test is conducted on
three different triples: ”cosine-geodesic-geodesic
derivative”, ”cosine-geodesic-min”, and ”cosine-
geodesic-harmonic”. The rows are the different
runs. The resulting p values of the Friedman’s test
for the triples are as follows: 0.0608, 0.0450, and
0.0273.

The Friedman’s test evaluates the hypothesis
that the column effects are all the same against the
alternative that they are not all the same. The first



256 S. Tekir, F. Mansmann and D. Keim

result says that the three distance measures are not
the same within the 90 % confidence interval. The
other two prove that these variations introduce sta-
tistically important effects to the already computed
values within the 95 % confidence interval. In other
words, the methods affect the clustering effective-
ness.

When we have a look at the micro-p values
given in Table 4, we see that the worst performance
for the geodesic cases is in the last run. In order
to find out the reason behind that, we expanded
Maclaurin series approximation in the equation 3
by one more term ending up with the equation 7.
We used Newton’s solver to numerically estimate
the root of the quintic equation given in equation 9.
The clustering results we get show that the quin-
tic geodesic equation improves the results in fa-
vor of some specific categories whereas it works
against the remaining ones resulting in almost the
same micro-p value we have. When we analyze
the contingency tables for cosine and geodesic in
every run, we also realize that the geodesic runs’
improvements are the results of great performances
on those specific categories. Thus, the geodesic ap-
proach’s effectiveness must have some relation with
some category-specific attribute. However, we have
not clarified it yet.

According to the mean and standard deviation
of the different distance measurements provided in
Table 4, the geodesic better expresses the inherent
clustering structure of the data (due to higher mean)
and at the same time it is more robust as it has less
variance.

5 Conclusion

In this work, we propose a novel distance mea-
sure for clustering hypertext documents, which is
based on both textual information and the link
topology of the hypertext document collection. It
is useful to highlight the basic components of our
approach:

– The basic assumption is that clustering coeffi-
cient values that indicate the local connectivity
structure of the documents can be used as cur-
vatures. This assumption is based on the fact
that clustering coefficients are rough estimates
of curvatures [3]. They are computed on the

global link graph of the data set.

– The notion of geodesic distances in curved
spaces is used to define a mathematical function
to do feature combination. For this purpose the
geodesic distance calculation scheme on the 0-
sphere is utilized.

– Text features are combined with the generated
curvature values in order to improve the cluster-
ing results in the k-means case. This means in-
tegrating multiple feature spaces in the k-means
algorithm. One needs a framework that cov-
ers the comparative analysis of multiple fea-
ture spaces over single feature spaces in the
k-means algorithm to test the effectiveness of
the candidate functions for feature combination.
The abstract framework provided for the feature
weighting in the k-means algorithm [19] defines
the context and the evaluation methodology for
the work.

The experiments are conducted on the
Wikipedia XML Corpus English subset [4]. The
evaluation metrics are based on the ground truth
classification provided as the Wikipedia categori-
cal information. The results show that the curvature
values calculated based on the link graph of the data
set can be used to fine-tune the similarity values so
that the objective function for the clustering can be
minimized. Furthermore, the k-means algorithm
has proven to be suitable for the proposed geodesic
method because of the centroid concept. Using
centroid curvature value rather than the individual
document clustering coefficient values to fine-tune
the cosine is more reasonable as centroid curvature
value is a better indicator of locality. Thus, the
geodesic approach can be transferred to contexts
where there is a multiple feature space, in which
one feature can represent curvature, and there is a
cumulative calculation potential for this feature.

5.1 Future Work

The experimental results show that in some runs
the geodesic approaches perform better than cosine
whereas in some others they are slightly worse. The
next task to be done is to discover the factors related
to the success or failure of the geodesic method.

In pursuing the factors related to the perfor-
mance of geodesic over cosine in the experiments,
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result says that the three distance measures are not
the same within the 90 % confidence interval. The
other two prove that these variations introduce sta-
tistically important effects to the already computed
values within the 95 % confidence interval. In other
words, the methods affect the clustering effective-
ness.

When we have a look at the micro-p values
given in Table 4, we see that the worst performance
for the geodesic cases is in the last run. In order
to find out the reason behind that, we expanded
Maclaurin series approximation in the equation 3
by one more term ending up with the equation 7.
We used Newton’s solver to numerically estimate
the root of the quintic equation given in equation 9.
The clustering results we get show that the quin-
tic geodesic equation improves the results in fa-
vor of some specific categories whereas it works
against the remaining ones resulting in almost the
same micro-p value we have. When we analyze
the contingency tables for cosine and geodesic in
every run, we also realize that the geodesic runs’
improvements are the results of great performances
on those specific categories. Thus, the geodesic ap-
proach’s effectiveness must have some relation with
some category-specific attribute. However, we have
not clarified it yet.

According to the mean and standard deviation
of the different distance measurements provided in
Table 4, the geodesic better expresses the inherent
clustering structure of the data (due to higher mean)
and at the same time it is more robust as it has less
variance.

5 Conclusion

In this work, we propose a novel distance mea-
sure for clustering hypertext documents, which is
based on both textual information and the link
topology of the hypertext document collection. It
is useful to highlight the basic components of our
approach:

– The basic assumption is that clustering coeffi-
cient values that indicate the local connectivity
structure of the documents can be used as cur-
vatures. This assumption is based on the fact
that clustering coefficients are rough estimates
of curvatures [3]. They are computed on the

global link graph of the data set.

– The notion of geodesic distances in curved
spaces is used to define a mathematical function
to do feature combination. For this purpose the
geodesic distance calculation scheme on the 0-
sphere is utilized.

– Text features are combined with the generated
curvature values in order to improve the cluster-
ing results in the k-means case. This means in-
tegrating multiple feature spaces in the k-means
algorithm. One needs a framework that cov-
ers the comparative analysis of multiple fea-
ture spaces over single feature spaces in the
k-means algorithm to test the effectiveness of
the candidate functions for feature combination.
The abstract framework provided for the feature
weighting in the k-means algorithm [19] defines
the context and the evaluation methodology for
the work.

The experiments are conducted on the
Wikipedia XML Corpus English subset [4]. The
evaluation metrics are based on the ground truth
classification provided as the Wikipedia categori-
cal information. The results show that the curvature
values calculated based on the link graph of the data
set can be used to fine-tune the similarity values so
that the objective function for the clustering can be
minimized. Furthermore, the k-means algorithm
has proven to be suitable for the proposed geodesic
method because of the centroid concept. Using
centroid curvature value rather than the individual
document clustering coefficient values to fine-tune
the cosine is more reasonable as centroid curvature
value is a better indicator of locality. Thus, the
geodesic approach can be transferred to contexts
where there is a multiple feature space, in which
one feature can represent curvature, and there is a
cumulative calculation potential for this feature.

5.1 Future Work

The experimental results show that in some runs
the geodesic approaches perform better than cosine
whereas in some others they are slightly worse. The
next task to be done is to discover the factors related
to the success or failure of the geodesic method.

In pursuing the factors related to the perfor-
mance of geodesic over cosine in the experiments,
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the effect of initialization on the k-means algo-
rithm has been investigated. As previously de-
noted, cosine and geodesic approaches’ outcomes
do not have any relationship with the choice of ini-
tialization in the k-means algorithm. K-harmonic
means implementations were run to analyze the ini-
tialization sensitivity and no important improve-
ments were observed in both similarity measures
and one’s performance in comparison to the other’s.

The results motivate alternative computation
schemes for geodesic distances. We use geodesic
distance computation formula for 0-sphere (circle)
in this work. Alternatively, great-circle distances
(1-sphere) can be utilized as geodesics. On the
other hand; rather than assuming that the space
is spherical, taking into consideration the fact that
the clustering coefficient average for the data col-
lection coincides with a negative curvature value,
the underlying space can be assumed as hyperbolic.
Hyperbolic distance calculation schemes in accor-
dance with the given parameters can be devised.

We believe that the heuristics that are applied
to the clustering coefficient values in order to gen-
erate curvatures can be systematically studied and
improved. Furthermore, other linked data sets can
be used to further evaluate the effectiveness of the
geodesic distance measure.
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Abstract

The problem of portfolio optimization with its twin objectives of maximizing expected
portfolio return and minimizing portfolio risk renders itself difficult for direct solving
using traditional methods when constraints reflective of investor preferences, risk man-
agement and market conditions are imposed on the underlying mathematical model.

Marginal risk that represents the risk contributed by an asset to the total portfolio risk
is an important criterion during portfolio selection and risk management. However, the
inclusion of the constraint turns the problem model into a notorious non-convex quadratic
constrained quadratic programming problem that seeks acceptable solutions using meta-
heuristic methods.

In this work, two metaheuristic methods, viz., Evolution Strategy with Hall of Fame
and Differential Evolution (rand/1/bin) with Hall of Fame have been evolved to solve the
complex problem and compare the quality of the solutions obtained. The experimental
studies have been undertaken on the Bombay Stock Exchange (BSE200) data set for the
period March 1999-March 2009. The efficiency of the portfolios obtained by the two
metaheuristic methods have been analyzed using Data Envelopment Analysis.

1 Introduction

A financial portfolio is a basket of tradable as-
sets such as bonds, stocks, securities etc. Portfolio
optimization which deals with determining a com-
bination of assets that best suits the investor’s pref-
erences, is a traditional problem in quantitative fi-
nance. Given the investor’s attitude, tolerance to
risk and his or her return expectations, the issue is to
allocate weights on the different assets of the port-
folio.

Modern Portfolio Theory [Elton et al., 2003] is
based on a formal expression of the representative
investor’s preferences. Markowitz [1952] laid the
framework for solving the portfolio selection prob-
lem using a mean-variance model, assuming the as-
set returns follow a Gaussian law. Hence the ex-

pected return of a portfolio is described using the
mean returns of the assets and the risk of the portfo-
lio is summarized by the variances and covariances
of the assets’ returns.

The theory asserts that the only risks priced in
the market are those common to several assets, and
not the specific risk inherent to each individual as-
set. From this point of view, it is thus optimal to
diversify the investment over a wide spectrum of
stocks in order to neutralize idiosyncratic risks. The
rational investor in this framework should then add
as many assets as possible in his or her portfolio.

Mathematically, the problem of portfolio op-
timization reduces to the optimization of a bi-
criterion objective function that characterizes min-
imizing risk and maximizing the expected portfolio
return. The solution to the problem lies in graph-

– 274
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ically obtaining what is termed an efficient fron-
tier which is a risk-return tradeoff curve, giving the
minimum level of risk to take for an expected re-
turn or, alternatively, the maximum return one can
expect for a given level of risk.

The Markowitz model, for the solution of the
portfolio selection problem assumed a perfect mar-
ket disallowing short sales, ignoring transaction
costs and taxes and permitting trading of securities
as any fraction. Under these assumptions, the prob-
lem reduces to a quadratic programming problem
that can be easily solved by classical methods.

However, in practice, the portfolio optimization
problem model is beset with constraints reflecting
investor preferences, market frictions and risk man-
agement that have rendered them difficult for di-
rect solving using analytical methods. It is in such
scenarios that metaheuristic strategies have been
looked up to for their solution. Thus Chang et al.,
[ 2000], Streichert et al., [2003], Kendall and Su,
[2005], Maringer [2005], Gilli et al., [2008] Nikos
et al., [2009], Pai and Michel [2009, 2011, 2012(a),
2012(b)] investigated multi-agent methods such as
Evolutionary algorithms, Differential Evolution and
Particle Swarm Optimization, and Fernando and
Gomez [2007] investigated Hopfield Neural Net-
works for the solution of constrained portfolio opti-
mization problem models.

In this work, we discuss a portfolio optimization
problem that is governed by the basic constraint,
bounding constraint, short selling besides marginal
risk control.

A basic constraint ensures that the weights al-
lotted to each asset in the portfolio lies between 0
and 1 with their sum adding to 1. In other words,
the investor expects his or her capital to be fully in-
vested. In practice, it is quite often the case that a
portfolio manager is limited in his choices by his or
her mandate, with a ceiling on either individual as-
sets and/or types of assets, such as sectors, styles
or geographic zone. In the former case the con-
straint is referred to as bounding constraint and in
the latter case as class constraint. Short selling is
indulged in when assets are borrowed from a third
party with the understanding of returning them to
the lender at a later date with the short seller hop-
ing to profit from a decline in the price of the assets
between the sale and the repurchase, for the short
seller hopes to pay less to buy the assets back than

he or she received while selling them. Thus short
selling constraints allow weights to carry negative
values and such assets are termed short positions
in a portfolio. In contrast, long positions are assets
which yield returns during their rise in prices and
hence are indicated by positive weights.

A portfolio made up of only long positions is
termed long only portfolio in portfolio management
parlance. In contrast, it is also possible to operate
under a constraint when the weights can vary be-
tween –c to +c for some constant c and their sum
adds up to 1. A portfolio which is an assortment of
both long positions and short positions is known as
a long-short portfolio.

The marginal risk contribution is a measure of
risk to monitor the risk contribution of a portfolio.
Mathematically, Grinold and Kahn (1999) defined
the marginal contribution of risk of a given asset as
the partial derivative of the standard deviation of the
portfolio return with respect to the position of that
asset.

The inclusion of the marginal risk constraint
turns the portfolio optimization problem model into
a quadratic constrained non convex quadratic pro-
gramming optimization problem rendering it diffi-
cult for direct solving by classical methods.

Zhu et al., (2010) attempted solution of a
marginal risk constrained portfolio optimization
model by proposing an efficient branch and bound
method which identified and exploited the special
properties of the problem model. However, their
investigations remarked that ‘. . . global optimality
of the solution generated by the branch-and-bound
method is guaranteed by the fact that the relaxed
subproblem over a subrectangle can approximate
the original problem over the same subrectangle
with any accuracy provided that the subrectangle is
sufficiently small. . . ’ Pai and Michel (2011) inves-
tigated a metaheuristic solution to a marginal risk
constrained portfolio optimization problem model,
however, the objective of the model was to maxi-
mize the Sharpe ratio of the portfolio and dealt with
global asset allocation with their own specific con-
straints.

In this work, we discuss the application of
two metaheuristic methods belonging to two dif-
ferent genres of evolution computation, viz., Evo-
lution Strategy with Hall of Fame and Differential
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both long positions and short positions is known as
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risk to monitor the risk contribution of a portfolio.
Mathematically, Grinold and Kahn (1999) defined
the marginal contribution of risk of a given asset as
the partial derivative of the standard deviation of the
portfolio return with respect to the position of that
asset.
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turns the portfolio optimization problem model into
a quadratic constrained non convex quadratic pro-
gramming optimization problem rendering it diffi-
cult for direct solving by classical methods.

Zhu et al., (2010) attempted solution of a
marginal risk constrained portfolio optimization
model by proposing an efficient branch and bound
method which identified and exploited the special
properties of the problem model. However, their
investigations remarked that ‘. . . global optimality
of the solution generated by the branch-and-bound
method is guaranteed by the fact that the relaxed
subproblem over a subrectangle can approximate
the original problem over the same subrectangle
with any accuracy provided that the subrectangle is
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tigated a metaheuristic solution to a marginal risk
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Evolution with Hall of Fame, for the solution of
the marginal risk constrained portfolio optimization
problem model also governed by the basic, bound-
ing and short selling constraints. The metaheuristic
methods employ penalty functions and weight stan-
dardization procedures to efficiently tackle the con-
straints. In the absence of existing work discussing
a metaheuristic solution of the problem model, the
two methods served to compare the solutions ob-
tained and their performance analyses.

The experimental studies have been undertaken
on the Bombay Stock Exchange (BSE200) data set
for the period March 1999-March 2009. The effi-
ciency of the portfolios obtained by the two meta-
heuristic methods have been analyzed using Data
Envelopment Analysis.

Section 2 details the mathematical formulation
of the marginal risk constrained portfolio optimiza-
tion problem. Section 3 details the two meta-
heuristic methods of Evolution Strategy with Hall
of Fame and Differential Evolution with Hall of
Fame. Section 4 explains the weight standardiza-
tion procedures for constraint handling. Section 5
describes the application of the metaheuristic strate-
gies for tackling the portfolio optimization problem.
Section 6 details the experimental studies and the
performance analysis tackling the constraints. Sec-
tion 7 presents the conclusions of the study.

2 Mathematical formulation of the
marginal risk constrained portfo-
lio optimization problem model

The mathematical formulation of the marginal
risk constrained portfolio optimization problem
model is as shown below.

If N is the number of assets in the universe, µi

the expected return of the asset i and σi j the covari-
ance between the returns of assets i and j and Wi
are the weights to be invested in asset i thenthe ex-
pected portfolio return is given by

(1)

and the risk is given by

(2)

The bi-objective portfolio optimization function
formulated as a single criterion optimization func-

tion in what is known as the weighted formulation
is given by

(3)

where λ is the risk aversion parameter. When
λ tends to 0, the objective function maximizes re-
turns, in other words, shifts weights towards stocks
that yield high returns and when λ tends to 1, the
objective function minimizes risk, in other words,
shifts weights towards stocks with minimum risk.

The basic and bounding constraints imposed on
the problem model are given as:

(4)

(5)

The marginal risk constraint is defined as

(6)

where,

portfolio risk

(7)

V is the variance-covariance matrix,

x% is the risk tolerance limit

and m̄, the Marginal Contribution to Risk is given
by,

(8)

As can be observed the problem model turns out to
be non convex quadratic constrained quadratic pro-
gramming problem that looks up to metaheuristic
methods for its solution. To tackle the nonlinear
constraint representing the marginal risk control
(equations (6-8)), the original mathematical formu-
lation was revised to include Joines and Houck’s
[1994] dynamic penalty functions. The revised for-
mulation of the objective function and the marginal
risk constraint is as follows:

(9)

where ψ(m̄, m̄, t) the constraint violation function is
given as,
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(10)

(11)

Here C, α, β are coefficients on which the quality of
the solution depends and t is the generation counter.

The revised mathematical formulation for the
marginal risk constrained portfolio optimization
problem is given by equations (9-11) as the objec-
tive function and equations (4-5) as its constraints.

Thus, while the notorious marginal risk con-
straint was tackled using dynamic penalty func-
tions, the rest of the constraints viz., basic,
bounding and short selling constraints were tack-
led using weight standardization functions which
on the whole, enabled the metaheuristic solution
strategies to maneuver the population of chromo-
somes/individuals through feasible solution space
rather than candidate solution space.

3 Metaheuristic methods for the
solution of the portfolio optimiza-
tion problem

In this section, the two metaheuristic methods
of Evolution Strategy with Hall of Fame and Dif-
ferential Evolution with Hall of Fame, have been
detailed.

3.1 Evolution Strategy with Hall of Fame

The Evolution Strategy with Hall of Fame (ES
HOF) is a population based search strategy that be-
longs to the genre of Evolutionary algorithms. ES
HOF is an adaptation of the Evolution Strategy (ES)
proposed by Pai and Michel [2009] to solve a com-
plex constrained portfolio optimization problem.

The ES HOF like any of its evolutionary algo-
rithm based counterparts generates a random initial
population of chromosomes and employs the ge-
netic inheritance operators of Arithmetic Variable
point Cross Over and Real number Uniform Muta-
tion [Osyszka, 2002] to generate the offspring pop-
ulation of chromosomes. In each generation, the

best fit among the µ parents (s�= 0) and λ offspring
(u�= 0) are selected for the next population with size
N, in the ratio of s:u such that

s+u = Nands,u �= 0 (12)

The fitness function is set as the objective func-
tion and thus that chromosome with the best fitness
function value is the one that yields the minimum
objective function value. Also, to extend elitism in
time, the algorithm adopts the mechanism of Hall
of Fame which accommodates the best among the
best of the chromosomes that have been generated
this far. During each generation, the best among the
parent and offspring chromosomes in the popula-
tion compete to enter the Hall of Fame. On satisfy-
ing the convergence criterion, when the evolution-
ary algorithm terminates, that chromosome in the
Hall of Fame yields the solution to the optimization
problem.

3.2 Differential Evolution (rand/1/bin)
with Hall of Fame

Differential Evolution (rand/1/bin) with Hall of
Fame (DE HOF) though population based like its
Evolutionary algorithm based counterparts, belongs
to a different genre of metaheuristics for they are
quite different from them with regard to their search
processes [Engelbrecht, 2007]. The Differential
Evolution based metaheuristics unlike their Evolu-
tion Algorithm counterparts employ distance and
direction functions modeled using vector differen-
tials, for their search processes.

DE (rand/1/bin) is a category of Differential Evo-
lution [Storn and Price, 1997] where rand indicates
the random selection of target vectors, 1 the number
of difference vectors used and bin the binary cross
over method used.

The DE HOF algorithm begins with an initial pop-
ulation of individuals. Two control parameters viz.,
Scaling factor β∈ (0,∞) which controls the amplifi-
cation of the differential variations and pr the prob-
ability of recombination which has a direct influ-
ence on controlling the diversity of the population,
are initialized.

The mutation operator produces a trial vector
ūi(t) for each individual of the current population
by mutating a target vector xa(t) with a weighted
differential as given below:
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(11)

Here C, α, β are coefficients on which the quality of
the solution depends and t is the generation counter.

The revised mathematical formulation for the
marginal risk constrained portfolio optimization
problem is given by equations (9-11) as the objec-
tive function and equations (4-5) as its constraints.

Thus, while the notorious marginal risk con-
straint was tackled using dynamic penalty func-
tions, the rest of the constraints viz., basic,
bounding and short selling constraints were tack-
led using weight standardization functions which
on the whole, enabled the metaheuristic solution
strategies to maneuver the population of chromo-
somes/individuals through feasible solution space
rather than candidate solution space.

3 Metaheuristic methods for the
solution of the portfolio optimiza-
tion problem

In this section, the two metaheuristic methods
of Evolution Strategy with Hall of Fame and Dif-
ferential Evolution with Hall of Fame, have been
detailed.

3.1 Evolution Strategy with Hall of Fame

The Evolution Strategy with Hall of Fame (ES
HOF) is a population based search strategy that be-
longs to the genre of Evolutionary algorithms. ES
HOF is an adaptation of the Evolution Strategy (ES)
proposed by Pai and Michel [2009] to solve a com-
plex constrained portfolio optimization problem.

The ES HOF like any of its evolutionary algo-
rithm based counterparts generates a random initial
population of chromosomes and employs the ge-
netic inheritance operators of Arithmetic Variable
point Cross Over and Real number Uniform Muta-
tion [Osyszka, 2002] to generate the offspring pop-
ulation of chromosomes. In each generation, the

best fit among the µ parents (s�= 0) and λ offspring
(u�= 0) are selected for the next population with size
N, in the ratio of s:u such that

s+u = Nands,u �= 0 (12)

The fitness function is set as the objective func-
tion and thus that chromosome with the best fitness
function value is the one that yields the minimum
objective function value. Also, to extend elitism in
time, the algorithm adopts the mechanism of Hall
of Fame which accommodates the best among the
best of the chromosomes that have been generated
this far. During each generation, the best among the
parent and offspring chromosomes in the popula-
tion compete to enter the Hall of Fame. On satisfy-
ing the convergence criterion, when the evolution-
ary algorithm terminates, that chromosome in the
Hall of Fame yields the solution to the optimization
problem.

3.2 Differential Evolution (rand/1/bin)
with Hall of Fame

Differential Evolution (rand/1/bin) with Hall of
Fame (DE HOF) though population based like its
Evolutionary algorithm based counterparts, belongs
to a different genre of metaheuristics for they are
quite different from them with regard to their search
processes [Engelbrecht, 2007]. The Differential
Evolution based metaheuristics unlike their Evolu-
tion Algorithm counterparts employ distance and
direction functions modeled using vector differen-
tials, for their search processes.

DE (rand/1/bin) is a category of Differential Evo-
lution [Storn and Price, 1997] where rand indicates
the random selection of target vectors, 1 the number
of difference vectors used and bin the binary cross
over method used.

The DE HOF algorithm begins with an initial pop-
ulation of individuals. Two control parameters viz.,
Scaling factor β∈ (0,∞) which controls the amplifi-
cation of the differential variations and pr the prob-
ability of recombination which has a direct influ-
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(13)

where

are randomly chosen individuals.

The trial vector is then used by the crossover opera-
tor to produce offspring. In this work we employ a
binary cross over operator given as below:

(14)

Here xi j(t) and ui j(t) are the jth elements of the
vectors and which are the parent vector x̄i(t) and
ūi(t) trial vector respectively, τ is the set of element
indices that undergoes perturbation and x′i j(t) is the
jth element of the offspring x̄i

′(t).

A deterministic selection where the better of the
two, for each pair of parent and offspring individu-
als chosen from the parent and offspring population,
is selected for stepping into the next generation, is
adopted for creating the new generation of popu-
lation. The best individual amongst those in the
new population competes to enter the Hall of Fame
which accommodates the best individual found thus
far. The new population is now treated as the cur-
rent parent population and the generations proceed
until the convergence criterion is met with.

When the algorithm terminates, that individual
in the Hall of Fame yields the optimal solution to
the optimization problem.

4 Constraint Handling

The marginal risk constrained portfolio opti-
mization problem includes the basic, bounding,
short selling and marginal risk constraints.

The marginal risk constraint which is a non-
linear constraint is tackled using Joines and
Houcke’s [1994] penalty function strategy. To
tackle the rest of the constraints a weight standard-
ization procedure had to be evolved.

Metaheuristic methods adopt weight standard-
ization where the portfolio weights adjust among
themselves to ensure that the entire population of
parents or offspring satisfy their appropriate con-
straints, as a consequence of which the metaheuris-

tic strategy is propelled to traverse through feasible
solution space rather than candidate solution space.

Handling constraints using weight standard-
ization approaches have already been reported in
the literature. Thus, while Chang et al., [2000]
devised an elegant method of weight adjustment
to ensure that the population set satisfied bound-
ing constraints, Pai and Michel [2009] devised re-
fined weight adjustment algorithms for a class of
portfolio optimization problems that involved class
constraints, constraints related to popular invest-
ment strategies such as 130-30 investment strategy
[Pai and Michel, 2012], Risk Budgeting [Pai and
Michel, 2011] and Equity Market Neutral Portfo-
lios [Pai and Michel, 2012].

In this work, the weight standardization algo-
rithms work to enable the population of chromo-
somes/individuals satisfy their basic, bounding and
short selling constraints. Considering the long-
short nature of the portfolio set, the standardization
involved adjustment of weights in the real space.
Both the metaheuristic methods viz., ES HOF and
DE HOF resorted to the same weight standardiza-
tion algorithms to propel them traverse through fea-
sible solution space.

Algorithm PORTFOLIO WEIGHT STDZN()
is an adaptation of the generic weight standardiza-
tion algorithm discussed by Pai and Michel [2012]
to tackle the basic and bounding constraints of a
long-short portfolio which however was employed
to solve a different portfolio optimization problem,
viz., optimization of 130-30 long-short portfolios.
We briefly review the two major functions of the al-
gorithm that serves to handle the constraints.

The PORTFOLIO WEIGHT STDZN() algo-
rithm first checks for the feasibility of the bounds.
If ∑i a > 1 or ∑i b < 1 where (a,b) are the
bounds interval, then the solution is deemed in-
feasible. Thereafter, the following two ma-
jor functions viz., LOW BOUNDS STDZN and
UP BOUNDS STDZN work to enable each chro-
mosome/individual satisfy their respective lower
and upper bounds subject to the basic constraint that
the sum of the weights must equal 1.

(i) LOW BOUNDS STDZN(): Here weights are ad-
justed in such a way that wi ≥ a and ∑i wi = 1 for
each chromosome/individual of the population.

(ii) UP BOUNDS STDZN(): Here weights are ad-
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justed in such a way that wi ≤ b and ∑i wi = 1 The
bounds (a,b) are set by the investor.

LOW BOUNDS STDZN function: For a given set
of weights W̄ = (w1,w1,w1, . . .wN) in a chromo-
some or individual, let Q denote those weights that
satisfied their lower bounds and R those weights wt

which fell short of their lower bounds and hence are
upgraded to their lower bounds (i.e.) wt = a.

Let T = ∑s∈Q |ws| be the absolute sum of
weights in Q and F = 1−∑N

i=1 a be the free pro-
portion of weights F, available after according the N
weights their minimum due subject to the basic con-
straint ∑K

i=1 wi = 1. The free proportion F is now re-
distributed to the weights in Q proportional to their
existing weights as ws = a+ |ws| · F

T ,s ∈ Q if T �= 0,
or equally distributed as ws = a+ F

|Q| ,s∈Q if T = 0.

The adjustment ensures that each of the
weights satisfy their lower bounds subject to
the basic constraint that the sum of the weights
equals 1. UP BOUNDS STDZN function:
TheUP BOUNDS STDZNensures that the weights
satisfy their upper bounds subject to the basic con-
straint that the sum of the weights equals 1.

Let Q denote the index set of those weights
which satisfy their upper bounds and R denote the
index set of those weights wtwhich exceeded their
upper bounds and therefore have been levelled off
such that wt =b.

Compute T = ∑s∈Q |ws|, the absolute sum of
weights in Q, and F = 1 − ∑s∈Q a − ∑t∈Q b, the
free proportion of weights F, available after accord-
ing those weights belonging to R their maximum
due (b) and those weights in Q their minimum due
(a), subject to the basic constraint that the sum of
weights equals 1.

Distribute the free proportion F to the weights
in Q, proportional to their existing weights as ws =
a+ |ws| · F

T ,s ∈ Q, i f T �= 0, or assign it completely
to an arbitrarily chosen weight wp, p ∈ Q such that
wp = F , otherwise.

If the adjustment still leaves weights exceeding
their upper bounds, repeat the process by levelling
of such weights to their maximum upper bound, mi-
grating these weights to the set R and redistributing
the new free proportion of weights amongst the cur-
rent set of weights in Q, until there are no more such
weights left in Q.

At the end of the adjustments, the weight set
wi i=1,2, . . .N satisfy both their upper and lower
bounds subject to the basic constraint that the sum
of weights equals 1.

During each generation, each of the parent
and offspring chromosome population standardize
their weights to satisfy their respective constraints
thereby facilitating a metaheuristic search through
feasible solution space.

5 Metaheuristic optimization of the
marginal risk constrained portfo-
lios

In this section we detail the optimization of
the marginal risk constrained portfolios by the two
metaheuristic methods viz., ES HOF and DE HOF.

The common inputs to the problem solution
irrespective of the metaheuristic strategy, are the
mean returns µi the variance-covariance matrix V
for the N assets in the portfolio, the risk budget x%,
the risk aversion parameter value λ and the popu-
lation size M. The coefficients C, α, β required for
the penalty function strategy are also initialized.

The convergence criterion fixed for both the
metaheuristic strategies was the number of gener-
ations.

5.1 ES HOF based portfolio optimization

The ES HOF begins by generating a random
initial population of chromosomes each of which
represents a set of portfolio weights. The popula-
tion is standardized to satisfy their basic, bounding
and short selling constraints by invoking the func-
tion PORTFOLIO WEIGHT STDZN().

Set fitHOF the fitness value of the chromosome oc-
cupying the Hall of Fame to ∞(a large number).

Compute ψ(W̄ , m̄, t) the constraint violation
function using equations (10-11) and the fitness
function values for each chromosome in the popula-
tion using equation (9). Record the penalty function
values for the chromosome.

Generate offspring population by undertak-
ingthe Arithmetic Variable point Cross overopera-
tion with a cross over rate ρ and Real Number Uni-
form Mutation for a specified mutation rate τ. Stan-
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irrespective of the metaheuristic strategy, are the
mean returns µi the variance-covariance matrix V
for the N assets in the portfolio, the risk budget x%,
the risk aversion parameter value λ and the popu-
lation size M. The coefficients C, α, β required for
the penalty function strategy are also initialized.

The convergence criterion fixed for both the
metaheuristic strategies was the number of gener-
ations.

5.1 ES HOF based portfolio optimization

The ES HOF begins by generating a random
initial population of chromosomes each of which
represents a set of portfolio weights. The popula-
tion is standardized to satisfy their basic, bounding
and short selling constraints by invoking the func-
tion PORTFOLIO WEIGHT STDZN().

Set fitHOF the fitness value of the chromosome oc-
cupying the Hall of Fame to ∞(a large number).

Compute ψ(W̄ , m̄, t) the constraint violation
function using equations (10-11) and the fitness
function values for each chromosome in the popula-
tion using equation (9). Record the penalty function
values for the chromosome.
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ingthe Arithmetic Variable point Cross overopera-
tion with a cross over rate ρ and Real Number Uni-
form Mutation for a specified mutation rate τ. Stan-
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dardize the offspring population by invoking PORT-
FOLIO WEIGHT STDZN(). Compute the penalty
function values and the fitness function values of
the offspring population.

The best of the parent and offspring population
in the ratio s:u, are selected as the members for the
new generation.

ES HOF now triggers its generation cycle by
reproducing offspring chromosomes, standardizing
them, enabling the best of the offspring to compete
with the chromosome in the Hall of Fame and ex-
porting the best of the parent and offspring popula-
tion to the subsequent generation, until the conver-
gence criteria is met with.

When the strategy terminates, that chromosome
in the Hall of Fame yields the optimal solution. The
portfolio weights obtain the optimal risk return cou-
ple for the specific risk aversion parameter.

Algorithm
Marginal Risk PortfolioOptmzn ESHOF()details
the working of the ES HOF in obtaining the so-
lution to the marginal risk constrained portfolio
optimization problem.

5.2 DE HOF based portfolio optimization

The DE HOF begins its operation by initializ-
ing the control parameters β (scaling factor) and
pr(probability of recombination). An initial ran-
dom population of individuals are generated. The
parent population is standardized to satisfy their
basic, bounding and short selling constraints by
invoking PORTFOLIO WEIGHT STDZN().fitHOF

the fitness value of the individual occupying the
Hall of Fame is initialized to ∞ (a large number).

DE HOF invokes the mutation operator to gen-
erate the trial vectors and the cross over opera-
tor to generate the offspring population. The off-
spring population is standardized using PORTFO-
LIO WEIGHT STDZN()and the penalty function
values and the fitness function values are recorded.

The deterministic selection operator is invoked
to select the best of the parent and offspring popu-
lation to the next generation. The best among the
choices made competes to enter the Hall of Fame.

DE HOF now triggers its generation cycle by
generating new offspring individuals from the new
generation selected, standardizing them, selecting

the best among the parent and the offspring to the
next generation while allowing the best among the
choices made to compete with the Hall of Fame un-
til the convergence criterion is met with.

Algorithm
Marginal Risk PortfolioOptmzn DEHOF() details
the working of the DE HOF in obtaining the solu-
tion to the marginal risk constrained portfolio opti-
mization problem.

6 Experimental studies

This section details the various experiments that
were undertaken to analyze the results and per-
formance of the two metaheuristic methods. The
studies were undertaken on the Bombay Stock
Exchange BSE 200 data set (March 1999-March
2009). The risk budget was fixed at 12.5% of the
total portfolio risk. The portfolio considered was a
large portfolio with 30 assets.

6.1 Experiment 1: Testing individual per-
formance consistency of ES HOF and
DE HOF over different runs for the
marginal risk constrained portfolio op-
timization problem

In this experiment the performance consistency
of the two metaheuristic methods were tested over
various runs for a specific portfolio set. Considering
the fact that metaheuristic search strategies evolve
out of a randomly generated population of chromo-
somes/individuals, it has turned out to be essential
to study the consistency of behaviour of the strate-
gies and hence the need for this study. Tables 1 and
2 show the control parameters set by ES HOF and
DE HOF respectively, during the runs.

Both the strategies were implemented over a
specific portfolio set of 30 assets and the results ob-
served for various runs for 51 different values of the
risk aversion parameter λ ∈ [0,1]. For each value of
λ, the optimal chromosome/individual available in
the Hall of Fame was extracted and the correspond-
ing annualized risk (%) and expected annual port-
folio return (%) values were computed. Figure 1
and Figure 2 show the plots of the risk-return cou-
ples graphed for various values of λ , for a specific
portfolio of assets, by ES HOF and DE HOF respec-
tively. A visual inspection does reveal the proximity
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Algorithm Marginal_Risk_PortfolioOptmzn_ESHOF() 

Obtain mean returns µi  and the variance-covariance matrix V for the N 
assets in the portfolio; 
Initialize coefficients  C,α, β; 
Set risk budget x%, risk aversion parameter value λ, population size M; 
Set Hall of Fame to null and initialize fitHOF the fitness value of the 
chromosome occupying the Hall of Fame to ∞( a large number) 
i = 0;         /* Set generation index  i to  0 */  
 
Randomly generate initial (parent)  population of size M;  

 
Standardize the parent population by invoking PORTFOLIO_WEIGHT_STDZN();  

  /* Pi = {x1, x 2 ,....xM}represents a set of feasible solutions to the     
marginal risk constrained portfolio optimization problem*/ 

 
Compute the penalty functions and fitness function values of the 
standardized parent populationPi; 

Perform Arithmetic Variable point Cross over with a cross over rate ρ  
and Real Number Uniform Mutation for a  specified mutation rate τ, to 
generate the first offspring population; 

Standardize the offspring population by invoking 
PORTFOLIO_WEIGHT_STDZN();     

               /* Let iO  represent the feasible offspring solution set*/ 

 
Compute the penalty functions and fitness values of the offspring 

population  iO ;/* the parent and the first generation offspring are  

ready for reproduction*/ 
repeat 

    i = i+1; 
Reproduction: Select the high fit parent chromosomes and   

offspring chromosomes from population 1−iP  and 1−iO  respectively 

in the ratio of s:u (s<u)to form the mating pool; 

Call the current pool of chromosomes iP ; 

Perform Arithmetic Variable point Cross over with a cross over 
rate ρ and Real Number Uniform Mutation for a    specified 
mutation rate τ, to generate the offspring population; 
Standardize the offspring population by invoking 
PORTFOLIO_WEIGHT_STDZN(); 
Compute the penalty functions and fitness values of the   

feasibleoffspring population iO  and let fitoffspring be the  

fitness value of the best fit chromosome Ot  among the population 

of offspring iO ; 

if((fitoffspring<fitHOF)and the penalty functions of tO is zero) 

then 

induct tO  into the Hall of Fame and setfitHOF = fitoffspring; 

until convergence criterion is met with; 

Obtain optimal solution from the chromosome in the Hall of Fame and 
fitHOF ; 
endMarginal_Risk_PortfolioOptmzn_ESHOF() 
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Algorithm Marginal_Risk_PortfolioOptmzn_DEHOF() 

Obtain mean returnsµi  and the variance-covariance matrix V for the 
N assets in the portfolio; 

Initialize coefficients  C,α, β; 

Set risk budget x%, risk aversion parameter value λ, population 
size M; 

Set Hall of Fame to null and initialize fitHOF the fitness value of 
the chromosome occupying the Hall of Fame to ∞( a large number) 

t = 0;/* Set generation   count t to  0 */  

Initialize the control parameters : β (scaling factor) and 
pr(probability of recombination); 
 
Generate an initial population of individuals P(t)representative of 
the portfolio weights;  

Standardize the parent population P(t) by invoking 
PORTFOLIO_WEIGHT_STDZN();  

Compute the penalty functions and fitness function values F(t) of 
the standardized parent population P(t); 

 
while termination condition is not satisfied do 

 
Compute the trial vector U(t)  by applying the mutation operator;  

Create the offspring population O(t) by applying the Cross over 
operator; 

Compute penalty function values and fitness values F’(t)of the 
offspring population O(t); 

   Apply selection operator on  F(t)and  F’(t) to determine which 
individuals will move to the next generation P(t+1); 

   t = t+1;                      /* increment generation count */ 

   Retain penalty function and fitness function values F(t)of the 
new population P(t); 

   Choose the best fit individual I(best) from P(t) and let I(fit) be 
its  fitness value; 

   if (I(fit)<fitHOF)and (the penalty function values of I(best)are 
zero) 

   then 

  induct  I(best)into the Hall of Fame and setfitHOF = I(fit); 
   endif 
 
endwhile 

 
Return the individual in the  Hall of Fame and fitHOF as the 
optimal solution; 

 

endMarginal_Risk_PortfolioOptmzn_DEHOF() 
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of the results obtained during various runs.

Table 1. Control parameters of the ES HOF
strategy for marginal risk constrained portfolio

optimization problem

Population Size (P) 300
Chromosome length 30
Number of genera-
tions

8000

Risk Aversion pa-
rameter( λ)
values

51 points
between
[0,1]

Cross over rate 0.61
Mutation rate 0.01
Parent child ratio for
reproduction (s:u)

1:2

Table 2. Control parameters of the DE HOF
strategy for marginal risk constrained portfolio

optimization problems

Population Size (P) 300
Chromosome length 30
Number of genera-
tions

8000

Risk Aversion pa-
rameter( λ)
values

51 points
between
[0,1]

Scaling factor (β) 0.5
Probability of recom-
bination (pr)

0.87

6.2 Experiment 2: Performance compari-
son of the optimal results yielded by ES
HOF and DE HOF

In this experiment the optimal risk return
couples yielded by ES HOF and DE HOF
methods were compared. The two meta-
heuristic methods were executed for differ-
ent runs over different portfolios with differ-
ent choices of assets made by the investor.

image78.jpg

Figure 1. Plot of optimal risk-return couples for
various runs using DE-HOF for a specific marginal
risk constrained portfolio (N=30) of BSE200 data
set (March 1999- March 2009), for various values

of risk aversion parameter λ ∈ [0,1]

image80.jpg

Figure 2. Plot of optimal risk-return couples for
various runs using ES-HOF for a specific marginal
risk constrained portfolio (N=30) of BSE200 data
set (March 1999- March 2009), for various values

of risk aversion parameter λ ∈ [0,1]

Pai and Michel [2007] devised an efficient
method where k-means clustering was adopted to
tackle the notorious cardinality constraint that was
turning the cardinality constrained portfolio opti-
mization problem into a mixed integer problem ren-
dering it difficult for direct solving using traditional
methods. After several experimental studies, the
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characteristics of mean and covariance of daily re-
turns of the assets were zeroed down upon to cluster
the original universe of N assets into K groups, for
an investor’s choice of K. The set of assets chosen
from each of the K clusters, termed investable uni-
verse not only served to eliminate the cardinality
constraint and simplify the mathematical model but
also served to yield reliable portfolio sets, which
was extensively demonstrated in their experimental
studies.

In this experiment the universe of assets was
k-means clustered into 30 groups and various in-
vestable universes were selected, choosing one as-
set from each of the clusters. The two metaheuristic
methods were run over the investable universes for
various runs.

Figure 3 and Figure 4 show the results obtained
by the two methods for a run over two investable
universes of 30 assets. A visual inspection indeed
shows the proximity of the solutions obtained by
the two methods considering the fact that both the
methods hail from different genres of metaheuris-
tics.

6.3 Experiment 3: Convergence behavior
of ES HOF and DE HOF strategies for
the marginal risk constrained portfolio
optimization problem

The convergence behavior of a metaheuristic al-
gorithm conventionally refers to the convergence of
the objective function that is being minimized. Fig-
ure 5 and Figure 6 show a plot of the fitness func-
tion values (minimal objective function value at-
tained by a population ) obtained during each gen-
eration, for a specific run of the ES HOF and DE
HOF strategies respectively on a specific marginal
risk constrained portfolio for risk aversion param-
eter λ=0.001. A visual inspection of the plots
show the convergence of the fitness function values.

image82.jpg

Figure 3. Plot of optimal risk-return couples for a
specific run of ES HOF and DE-HOF for a specific
marginal risk constrained investable universe of 30
assets (Investable Universe 1) of BSE200 data set
(March 1999- March 2009), for various values of

risk aversion parameter λ ∈ [0,1]
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Figure 4. Plot of optimal risk-return couples for a
specific run of ES HOF and DE-HOF for a specific
marginal risk constrained investable universe of 30
assets (Investable Universe 2) of BSE200 data set
(March 1999- March 2009), for various values of

risk aversion parameter λ ∈ [0,1]

Alternately, Vitaliy Feoktistov[2006] intro-
duced a new performance measure termed P-
measure that served to expand the convergence
measure of the objective function. P-measure rep-
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resents the dynamics of grouping the individuals/
chromosomes of the population around the opti-
mum. In other words, the more densely individ-
uals are populated in a generation, the better con-
vergence is intended. P-measure thus measures the
radius of the population as follows:

The Euclidean distance measure between the cen-
tre of the population and the individual farthest
from it is determined. The centre of the population
(barycentre) is calculated as the average vector of
all individuals in the population whose size is N,

(15)

where di are the individuals that comprise the pop-
ulation. The P-measure is defined as

(16)

Figure 7 and Figure 8 show the P-measures
computed for the DE-HOF and ES-HOF algorithms
for the same marginal risk constrained portfolio,
for a risk aversion parameter value λ=0.001 for the
same run graphed in Figure 4.

6.4 Experiment 4: Comparison of the tech-
nical efficiencies of the optimal portfo-
lios yielded by DE HOF and ES HOF

A visual inspection of the plot of the risk return
couples of the optimal portfolios, obtained by DE
HOF and ES HOF and the convergence behavior of
the two metaheuristic strategies, more or less dis-
played similar behaviour, despite the fact that the
two metaheuristic strategies belonged to two differ-
ent genres of metaheuristics.

Hence in this experiment, the technical efficien-
cies of the optimal portfolios obtained by DE HOF
and ES HOF were studied using Data Envelopment
Analysis (DEA).

DEA (Charnes et al., 1978) is a non-parametric,
deterministic methodology that serves to measure
the relative efficiencies of comparable functional
units called has emerged as a powerful and ana-
lytical tool in measuring the relative efficiency of
similar functional units. DEA is a non-parametric,
deterministic methodology for determining the rela-
tively efficient production frontier, by assessing the
relative efficiencies and performances of a collec-
tion of comparable entities called Decision Making

Units (DMUs) which transform inputs to outputs.
DEA analyzes each DMU individually, yielding its
efficiency score relative to the other DMUs in the
entire set by making use of linear programming to
determine the efficiency scores of each DMU rela-
tive to the others and hence is computationally in-
tensive.

image88.jpg

Figure 5. Convergence of the objective
function:Trace of fitness function values (Minimal

objective function values) obtained during the
generations for a specific run of DE HOF for a
specific marginal risk constrained portfolio, for

λ = 0.001
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Figure 6. Convergence of the objective function:
Trace of fitness function values (Minimal Objective

function values) obtained during the generations
for a specific run of ES HOF for a specific

marginal risk constrained portfolio, for λ = 0.001
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Figure 7. Population convergence (P-Measure):
Trace of P-Measures obtained during the

generations for various runs of DE HOF for a
specific risk budgeted global asset allocation

portfolio, for λ = 0.001
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Figure 8. Population convergence (P-Measure):
Trace of P-Measures obtained during the

generations for various runs of ES HOF for a
specific risk budgeted global asset allocation

portfolio, for λ = 0.001

Though DEA encompasses various approaches,
this work employs the BCC model (Banker,
Charnes and Cooper, 1984) built on variable returns
to scale. The linear programming problem repre-
senting the same, is given below:

(17)

where θ is the efficiency score, λ are the dual
variables, (xi,yi) is the amount of input utilized
and output produced respectively by the DMU i
whose efficiency is to be computed and (X ,Y ) =
((x1,y1),(x2,y2), . . .(xn,yn)) are the amounts of in-
put utilized and output produced, by each of the n
DMUs in the system.

As can be inferred, the linear programming sys-
tem will have to be solved n times to determine the
efficiency score of each of the nDMUs. In general,
an efficiency score of 1 implies the DMU is consid-
ered efficient.

For the marginal risk constrained portfolio opti-
mization problem, to measure the efficiency of port-
folios using a DEA, each risk return couple of the
optimal portfolios obtained for various risk aversion
parameter λ∈ [0,1], by the two metaheuristic strate-
gies, were treated as a DMU with risk as the input
utilized and return as the output produced by it. The
DMUs of all the competing risk return couples are
put together and the efficiency score of each of the
DMUs relative to all others in the set are obtained
by solving equation (17).

The objective behind employing DEA for mea-
suring the technical efficiency of portfolios was to
investigate the quality of the portfolios yielded by
DE HOF and ES HOF. Thus, for a specific portfolio
set, all risk return couples obtained for the optimal
portfolios during various runs were pooled together
as the set of DMUs. The efficiency scores of each
of the DMUs in each of the sets were obtained by
solving the linear programming system of equation
(14).

Table 3 illustrates a summary of the statistical
measures of dispersion for the efficiency scores of
the optimal portfolios for a specific portfolio of the
BSE200 data set obtained by DE HOF and ES HOF.

Using the observations listed in Table 3, thes-
tatistical hypotheses that there is no significant dif-
ference in the average efficiency scores of the two
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competing methods viz., DE HOF and ES HOF was
accepted at 1% level of significance using a test
statistic z for large samples.

Table 3. Summary of the DEA analysis of
marginal risk constrained optimal portfolios of the

BSE200 data set, obtained by DE HOF and ES
HOF

DE
HOF

ES
HOF

Number of
DMUs (n)
considered by
the DEA

204 204

Average effi-
ciency score
(µ)

0.6411 0.6224

Standard devi-
ation of the ef-
ficiency scores
(σ)

0.1838 0.1648

Coefficient of
Variation

3.4873 3.7757

A statistical testing of hypotheses using paired
t-tests was applied for the efficiency scores obtained
by the DEA, for the DE HOF and ES HOF based
optimal portfolios. The objective was to find out if
there was any significant difference in the means of
the efficiency scores with regard to the two meta-
heuristic based methods, and if so to find out which
of the two methods was efficient. The null hypothe-
ses and alternate hypotheses set to a confidence
level of 95% were:

H0: There is no significant difference in the
means of the efficiency scores yielded by DE
HOF and ES HOF

H1: There is a significant difference in the
means of the efficiency scores yielded by DE
HOF and ES HOF.

The test revealed that there was no significant dif-
ference in the means of the efficiency scores yielded
by DE HOF and ES HOF concluding that both
the metaheuristic methods despite belonging to dif-
ferent genres of metaheuristics had only equalled
themselves in their efficiency.

7 Conclusions

In this work, a metaheuristic optimization of
marginal risk constrained portfolios was under-
taken. Two metaheuristic strategies, viz., DE
HOF and ES HOF belonging to two different gen-
res of evolution computation and augmented with
weight standardization procedures to enable effi-
cient search through feasible solution space and en-
sure faster convergence, were applied to solve the
problem. The experimental studies were under-
taken on portfolio sets selected from the Bombay
Stock Exchange data set (BSE 200 data set March
1999-March 2009).

The conclusions are:

i Marginal risk constrained portfolio optimiza-
tion problem together with basic, bounding and
long-short portfolio constraints turns itself into
a non-convex quadratic constrained quadratic
programming problem, difficult for direct solv-
ing using analytical methods. The metaheuris-
tic methods of DE HOF and ES HOF both be-
longing to different genres of evolution compu-
tation have served to find solutions to the com-
plex problem within reasonable time and com-
puational effort.

ii Both the metaheuristic methods augmented with
weight standardization procedures served to
navigate themselves only through feasible solu-
tion space rather than candidate solution space
thereby ensuring faster convergence.

iii Both the metaheuristic methods reported con-
sistency of performance during their individual
runs.

iv For a specific portfolio set, the risk return cou-
ples of the optimal portfolios yielded by the DE
HOF and ES HOF strategies for a range of risk
aversion parameter values were in close proxim-
ity to one another.

v A DEA to measure the technical efficiencies of
the portfolios yielded by the two metaheuris-
tic methods,resulted in both the metaheuristic
strategies reporting matching performance.

vi A statistical testing of hypothesis of the effi-
ciency scores obtained by the two methods only
revealed that there was no significant difference
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competing methods viz., DE HOF and ES HOF was
accepted at 1% level of significance using a test
statistic z for large samples.

Table 3. Summary of the DEA analysis of
marginal risk constrained optimal portfolios of the

BSE200 data set, obtained by DE HOF and ES
HOF

DE
HOF

ES
HOF

Number of
DMUs (n)
considered by
the DEA

204 204

Average effi-
ciency score
(µ)

0.6411 0.6224

Standard devi-
ation of the ef-
ficiency scores
(σ)

0.1838 0.1648

Coefficient of
Variation

3.4873 3.7757

A statistical testing of hypotheses using paired
t-tests was applied for the efficiency scores obtained
by the DEA, for the DE HOF and ES HOF based
optimal portfolios. The objective was to find out if
there was any significant difference in the means of
the efficiency scores with regard to the two meta-
heuristic based methods, and if so to find out which
of the two methods was efficient. The null hypothe-
ses and alternate hypotheses set to a confidence
level of 95% were:

H0: There is no significant difference in the
means of the efficiency scores yielded by DE
HOF and ES HOF

H1: There is a significant difference in the
means of the efficiency scores yielded by DE
HOF and ES HOF.

The test revealed that there was no significant dif-
ference in the means of the efficiency scores yielded
by DE HOF and ES HOF concluding that both
the metaheuristic methods despite belonging to dif-
ferent genres of metaheuristics had only equalled
themselves in their efficiency.

7 Conclusions

In this work, a metaheuristic optimization of
marginal risk constrained portfolios was under-
taken. Two metaheuristic strategies, viz., DE
HOF and ES HOF belonging to two different gen-
res of evolution computation and augmented with
weight standardization procedures to enable effi-
cient search through feasible solution space and en-
sure faster convergence, were applied to solve the
problem. The experimental studies were under-
taken on portfolio sets selected from the Bombay
Stock Exchange data set (BSE 200 data set March
1999-March 2009).

The conclusions are:

i Marginal risk constrained portfolio optimiza-
tion problem together with basic, bounding and
long-short portfolio constraints turns itself into
a non-convex quadratic constrained quadratic
programming problem, difficult for direct solv-
ing using analytical methods. The metaheuris-
tic methods of DE HOF and ES HOF both be-
longing to different genres of evolution compu-
tation have served to find solutions to the com-
plex problem within reasonable time and com-
puational effort.

ii Both the metaheuristic methods augmented with
weight standardization procedures served to
navigate themselves only through feasible solu-
tion space rather than candidate solution space
thereby ensuring faster convergence.

iii Both the metaheuristic methods reported con-
sistency of performance during their individual
runs.

iv For a specific portfolio set, the risk return cou-
ples of the optimal portfolios yielded by the DE
HOF and ES HOF strategies for a range of risk
aversion parameter values were in close proxim-
ity to one another.

v A DEA to measure the technical efficiencies of
the portfolios yielded by the two metaheuris-
tic methods,resulted in both the metaheuristic
strategies reporting matching performance.

vi A statistical testing of hypothesis of the effi-
ciency scores obtained by the two methods only
revealed that there was no significant difference

METAHEURISTIC OPTIMIZATION OF MARGINAL . . .

in their mean efficiency scores for a confidence
level of 95%.

Future work would revolve round solving the
marginal risk constrained portfolio optimization
problem as a constrained multi-objective optimiza-
tion problem.
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