Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the calculation and design stages of the TLP platform serving as a supporting construction of a 6 MW offshore wind turbine. This platform is designed to anchor at sea at a depth of 60 m. The authors presented the method of parameterization and optimization of the hull geometry. For the two selected geometry variants, the load and motion calculations of the platform subjected to wind, wave and current under 50-year storm conditions were performed. The maximum load on the structure was determined in these extreme storm conditions. For these loads, the MES calculation of the designed platform was performed for the selected variant. Authors have presented a method for calculating maximum wind, wave and current stresses on the structure during the worst storm in the past 50 years. For these loads the MES endurance calculations of the designed platform were made. Based on the results of these calculations, the required structural changes and recalculations have been made in succession to the structural design of the platform, which meets the design requirements and has the required ad hoc strength. The article contains stress analysis in „difficult” nodes of constructions and discusses ways of solving their problems. The work is part of the WIND-TU-PLA project from the NCBR Research Agreement (Agreement No. MARTECII / 1/2014).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
230--241
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Gdańsk University of Technology 11/12 Narutowicza St. 80 - 233 Gdańsk Poland
autor
- Gdańsk University of Technology 11/12 Narutowicza St. 80 - 233 Gdańsk Poland
autor
- Gdańsk University of Technology 11/12 Narutowicza St. 80 - 233 Gdańsk Poland
autor
- Gdańsk University of Technology 11/12 Narutowicza St. 80 - 233 Gdańsk Poland
Bibliografia
- 1. M. Deja, M. S. Siemiątkowski: Feature-based generation of machining process plans for optimised parts manufacture. Journal of Intelligent Manufacturing August 2013, Volume 24, Issue 4, pp 831–846.
- 2. Niklas K., Kozak J.: Experimental investigation of Steel– Concrete–Polymer composite barrier for the ship internal tank construction. OCEAN ENGINEERING. –Vol. 111, (2016), s.449-460
- 3. Hirt Ł., Lampart P.: Complex multidisciplinary optimization of turbine blading systems. ARCHIVES OF MECHANICS. –Vol. 64, nr. 2 (2012), s.153-175
- 4. Sabik A., Kreja I.: Large thermo-elastic displacement and stability FEM analysis of multilayered plates and shells. THIN-WALLED STRUCTURES. –Vol. 71, (2013), pp.119-133.
- 5. Kahsin M., Łuczak M.: NUMERICAL MODEL QUALITY ASSESSMENT OF OFFSHORE WIND TURBINE SUPPORTING STRUCTURE BASED ON EXPERIMENTAL DATA. Structural Health Monitoring 2015: System Reliability for Verification and Implementation: Proceedings of the 10th International Workshop on Structural Health Monitoring.- Vol. 1/ ed. Fu-Kuo Chang, Fotis Kopsaftopoulos 439 North Duke Street · Lancaster, PA 17602-4967, U.S.A. : DEStech Publications, Inc., 2015, s.2817-2824
- 6. Kahsin M., Luczak M., Peeters B.: Use and assessment of preliminary FE model results within testing process of offshore windturbine supporting structure. EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, Book Series EURODYN International Conference on Structural Dynamics. Pages 3659-3666.
- 7. Łuczak M., Manzato S., Peeters B., Branner K., Berring P., Kahsin M.: Updating Finite Element Model of a Wind Turbine Blade Section Using Experimental Modal Analysis Results. SHOCK AND VIBRATION. -Vol. 2014, iss. 1 (2014), s.71-82
- 8. Brommundt M., Krause L.,Merz K., Muskulus M.: Mooring system optimization for floating wind turbines using frequency domain analysis. Energy Procedia 24 (2012) 289–296
- 9. Karimirad M., Moan T.: A simplified method for coupled analysis of floating offshore wind turbines. Marine Structures 27 (2012) 45-63
- 10. Jeon S.H., Cho Y.U., Seo M.W., Cho J.R., Jeong W.B.: Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables. Ocean Engineering 72 (2013) 356–364
- 11. Bachynski E.E., Moan T.: Design considerations for tension leg platform wind turbines. Marine Structures 29 (2012) 89-114
- 12. Adam F.,Myland T., Schuldt B., Großmann J., Dahlhaus F.: Evaluation of internal force superposition on a TLP for wind turbines. Renewable Energy, Volume 71, November 2014, Pages 271–275
- 13. Adam F., Ritschel U., Plumridge E., Großmann J.:PreDesign of a TLP steel-concrete composite substructure for a 6 MW wind turbine as a way to essential cost-reduction. Conference proceedings RENEW, 2016, Lisbon
- 14. DNV-OS-J103 Design of Floating Wind Turbine Structures. JUNE 2013
- 15. https://www.senvion.com/global/en/wind-energysolutions/ wind-turbines/6xm/62m126/
- 16. Jonkman J., Butterfield S., Musial W., Scot G.: Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Technical Report NREL/TP-500-38060 February 2009
- 17. Sarpkaya T.: Wave forces on offshore structures, Cambridge University Press, 2010
- 18. Dymarski P., Ciba E., Marcinkowski T.: Effective method for determining environmental loads on supporting structures for offshore wind turbines. POLISH MARITIME RESEARCH 1(89) 2016 Vol. 23; pp. 52-60 10.1515/ pomr-2016-0008
- 19. DNV-OS-J101 Design of Offshore Wind Turbine Structures. MAY 2014
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db34d244-847f-4f25-9174-cc4a417bdc93