PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear hygrothermal effects on the vibrations of a magnetostrictive viscoelastic laminated sandwich plate resting on an elastic medium

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In engineering applications, composite structures supported by elastic foundations are being vastly utilized in various operating environmental conditions. The nonlinear hygrothermal effect on vibration analysis of a magnetostrictive viscoelastic laminated composite sandwich plate rested on two-parameter Pasternak’s foundations is studied in the present article. The material properties of the viscoelastic plate’s layers are considered based on the Kelvin–Voigt model. The governing equation system is derived according to Hamilton’s principle. The analytical solution is obtained to study influences of the hygrothermal change, half wave number, magnitude of the feedback control gain, aspect ratios, thickness ratio, and structural viscoelastic damping coefficients on vibration damping characteristics of the plate including the frequencies, the damping rate, and the deflection. The obtained results indicate that the natural frequency and deflection reduce with increasing the structural viscoelastic damping value. The plate takes a long time for suppressing its vibration due to increasing the hygrothermal factor.
Rocznik
Strony
692--706
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
  • Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
  • Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Bisha University, Bisha 61922, Saudi Arabia
Bibliografia
  • [1] Zenkour AM, Allam MNM, Sobhy M. Bending of a fiber-reinforced viscoelastic composite plate resting on elastic foundations. Arch Appl Mech. 2011;81(1):77–96.
  • [2] Zenkour AM, Allam MNM, Sobhy M. Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundations. Acta Mech. 2010;212(3):233–52.
  • [3] Alimirzaei S, Sadighi M, Nikbakht A. Wave propagation analysis in viscoelastic thick composite plates resting on visco-Pasternak foundation by means of quasi-3D sinusoidal shear deformation theory. Eur J Mech A/Solids. 2019;74:1–15.
  • [4] Zenkour AM, Allam MNM, Sobhy M. Effect of transverse normal and shear deformation on a fiber-reinforced viscoelastic beam resting on two-parameter elastic foundations. Int J Appl Mech. 2010;2(1):87–115.
  • [5] Arani AG, Emdadi M, Ashrafi H, Mohammadimehr M, Nikneja S, Arani AAG, Hosseinpour A. Analysis of viscoelastic functionally graded sandwich plates with CNT reinforced composite face sheets on viscoelastic foundation. J Solid Mech. 2019;11(4):690–706.
  • [6] Allam MNM, Zenkour AM. Bending response of a fiber-reinforced viscoelastic arched bridge model. Appl Math Model. 2003;27:233–48.
  • [7] Zenkour AM. Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory. Acta Mech. 2004;171(3–4):171–87.
  • [8] Sofiyev AH, Zerin Z, Kuruoglu N. Dynamic behavior of FGM viscoelastic plates resting on elastic foundations. Acta Mech. 2020;231:1–17.
  • [9] Sofiyev AH. On the solution of the dynamic stability of heterogeneous orthotropic viscoelastic cylindrical shells. Compos Struct. 2018;206:124–30.
  • [10] Haciyev VC, Sofiyev AH, Kuruoglu N. On the free vibration of orthotropic and inhomogeneous with spatial coordinates plates resting on the inhomogeneous viscoelastic foundation. Mech Adv Mater Struct. 2019;26:886–97.
  • [11] Anjanappa M, Bi J. A theoretical and experimental study of magnetostrictive mini actuators. Smart Mater Struct. 1994;1:83–91.
  • [12] Anjanappa M, Bi J. Modelling, design and control of embedded Terfenol-D actuator. Smart Struct Intel Sys. 1993;1917:908–18.
  • [13] Anjanappa M, Bi J. Magnetostrictive mini actuators for smart structural application. Smart Mater Struct. 1994;3:383–90.
  • [14] Hiller MW, Bryant MD, Umegaki J. Attenuation and transformation of vibration through active control of magnetostrictive Terfenol. J Sound Vib. 1989;134:507–19.
  • [15] Reddy JN, Barbosa JI. On vibration suppression of magnetostrictive beams. Smart Mater Struct. 2000;9:49–58.
  • [16] Pradhan SC, Ng TY, Lam KY, Reddy JN. Control of laminated composite plates using magnetostrictive layers. Smart Mater Struct. 2001;10:657–67.
  • [17] Pradhan SC. Vibration suppression of FGM shells using embedded magnetostrictive layers. Int J Solids Struct. 2005;42:2465–88.
  • [18] Zhang Y, Zhou H, Zhou Y. Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers. Acta Mech Solida Sin. 2015;28:50–60.
  • [19] Subramanian P. Vibration suppression of symmetric laminated composite beams. Smart Mater Struct. 2002;11(6):880–5.
  • [20] Bhattacharya B, Vidyashankar BR, Patsias S, Tomlinson GR. Active and passive vibration control of flexible structures using a combination of magnetostrictive and ferro-magnetic alloys. Proc SPIE Smart Struct Mater. 2000;4073:204–14.
  • [21] Kumar JS, Ganesan N, Swarnamani S, Padmanabhan C. Active control of beam with magnetostrictive layer. Comput Struct. 2003;81(13):1375–82.
  • [22] Kumar JS, Ganesan N, Swarnamani S, Padmanabhan C. Active control of simply supported plates with a magnetostrictive layer. Smart Mater Struct. 2004;13(3):487–92.
  • [23] Ghosh DP, Gopalakrishnan S. Coupled analysis of composite laminate with embedded magnetostrictive patches. Smart Mater Struct. 2005;14(6):1462–73.
  • [24] Zhou HM, Zhou YH. Vibration suppression of laminated composite beams using actuators of giant magnetostrictive materials. Smart Mater Struct. 2007;16(1):198–206.
  • [25] Murty AVK, Anjanappa M, Wu Y-F. The use of magnetostrictive particle actuators for vibration attenuation of flexible beams. J Sound Vib. 1997;206(2):133–49.
  • [26] Suman SD, Hirwani CK, Chaturvedi A, Panda SK. Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure. IOP Conf Ser Mater Sci Eng. 2017;178:012026.
  • [27] Koconis DB, Kollar LP, Springer GS. Shape control of composite plates and shells with embedded actuators I: voltage specified. J Compos Mater. 1994;28:415–58.
  • [28] Lee SJ, Reddy JN, Rostamabadi F. Transient analysis of laminated composite plates with embedded smart-material layers. Fin Elem Anal Design. 2004;40:463–83.
  • [29] Zenkour AM, El-Shahrany HD. Vibration suppression analysis for laminated composite beams contain actuating magnetostrictive layers. J Computat Appl Mech. 2019;50(1):69–75.
  • [30] Zenkour AM, El-Shahrany HD. Vibration suppression of advanced plates embedded magnetostrictive layers via various theories. J Mater Res Tech. 2020;9(3):4727–48.
  • [31] Zenkour AM, El-Shahrany HD. Control of a laminated composite plate resting on Pasternak’s foundations using magnetostrictive layers. Arch Appl Mech. 2020;90:1943–59.
  • [32] Zenkour AM, El-Shahrany HD. Hygrothermal vibration of adaptive composite magnetostrictive laminates supported by elastic substrate medium. Europ J Mech/A Solids. 2021;85:104140.
  • [33] Zenkour AM, El-Shahrany HD. Vibration suppression of magnetostrictive laminated beams resting on viscoelastic foundation. Appl Math Mech. 2020;41:1269–86.
  • [34] Hong CC. Transient responses of magnetostrictive plates without shear effects. Int J Eng Sci. 2009;47(3):355–62.
  • [35] Hong CC. Transient responses of magnetostrictive plates by using the GDQ method. Eur J Mech A Solids. 2010;29(6):1015–21.
  • [36] Shankar G, Kumar SK, Mahato PK. Vibration analysis and control of smart composite plates with delamination and under hygrothermal environment. Thin-Walled Struct. 2017;116:53–68.
  • [37] Zenkour AM, El-Shahrany HD. Hygrothermal effect on vibration of magnetostrictive viscoelastic sandwich plates supported by Pasternak’s foundations. Thin-Walled Struct. 2020;157:107007.
  • [38] Drozdov AD. Viscoelastic structures: mechanics of growth and aging. San Diego: Academic Press; 1998.
  • [39] Zenkour AM. Thermal bending of layered composite plates resting on elastic foundations using four-unknown shear and normal deformations theory. Compos Struct. 2015;122:260–70.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db3244ab-4320-45af-b1ea-4d11bd8ba45f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.