PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Synthesis of conical Co–Fe alloys structures obtained with crystal modifier in superimposed magnetic field

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The addition of crystal modifier to electrolyte used during electrodeposition of metals and alloys allows obtaining conical structures without using any template. This method is fast and ensures covering large areas during one single electrodeposition process. In this work, Co–Fe cones were obtained by one-step method with ammonium chloride as a crystal modifier. The influence of electrodeposition parameters and electrolyte compositions were investigated. Electrodeposition conditions (duration, electrolyte temperature, and addition of NH4Cl), which allow obtaining the most uniform conical structures, were applied during sample fabrication in the magnetic field. The influence of its value and direction on the quality and compositions of obtained alloys was investigated using Scanning Electron Microscope (SEM) photos. To check if there is any change in the sample crystal system, the X-Ray Diffraction (XRD) analysis was performed. To confirm the synthesis of Co–Fe cones, they were analyzed using the X-ray photoelectron Spectroscopy (XPS) method.
Rocznik
Strony
507--517
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
  • Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Luborsky FE, Livingston JD, Chin GY. Magnetic properties of metals and alloys. In: Physical Metallurgy. North-Holland: Elsevier; 1996. pp. 2501–2565.
  • [2] Yamaura S. Microstructure and magnetostriction of heavily groove-rolled Fe-Co alloy wires. Mater Sci Eng B Solid-State Mater Adv Technol. 2021. https://doi.org/10.1016/j.mseb.2020.114946.
  • [3] Wang Z, Zhang S, Lv X, Bai J, Yu W, Liu J. Electrocatalytic hydrogen evolution on iron-cobalt nanoparticles encapsulated in nitrogenated carbon nanotube. Int J Hydrogen Energy. 2019. https://doi.org/10.1016/j.ijhydene.2019.04.235.
  • [4] Chen Z, Yang X, Fu Y. Influence of sodium propargyl sulfonate on electrodeposition of Fe–Co alloy. J Alloys Compd. 2020. https://doi.org/10.1016/j.jallcom.2020.154167.
  • [5] Chotibhawaris T, Tachai L, Jantaratana P, Boonyongmaneerat Y. Influence of the electrodeposited Co-Fe Alloys’ characteristics on their magnetic properties. Adv Mater Res. 2014. https://doi.org/10.4028/www.scientific.net/AMR.1025-1026.709.
  • [6] Dobosz I, Gumowska W, Czapkiewicz M. Magnetic properties of Co-Fe nanowires electrodeposited in pores of alumina membrane. Arch Metall Mater. 2013. https://doi.org/10.2478/amm-2013-0052.
  • [7] Vock S, Tschulik K, Uhlemann M, Hengst C, Fähler S, Schultz L, Neu V. Magnetostatic nearest neighbor interactions in a Co 48 Fe 52 nanowire array probed by in-field magnetic force microscopy. J Appl Phys. 2015. https://doi.org/10.1063/1.4937275.
  • [8] Vock S, Hengst C, Wolf M, Tschulik K, Uhlemann M, Sasvári Z, Makarov D, Schmidt OG, Schultz L, Neu V. Magnetic vortex observation in FeCo nanowires by quantitative magnetic force microscopy. Appl Phys Lett. 2014. https://doi.org/10.1063/1.4900998.
  • [9] Lallemand F, Ricq L, Deschaseaux E, De Vettor L, Berçot P. Electrodeposition of cobalt-iron alloys in pulsed current from electrolytes containing organic additives. Surf Coat Technol. 2005. https://doi.org/10.1016/j.surfcoat.2005.01.038.
  • [10] Chansena A, Sutthiruangwong S. Corrosion behavior of electrodeposited Co-Fe alloys in aerated solutions. J Magn Magn Mater. 2017. https://doi.org/10.1016/j.jmmm.2017.01.044.
  • [11] Hashemzadeh M, Raeissi K, Ashrafizadeh F, Khorsand S. Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings. Surf Coatings Technol. 2015. https://doi.org/10.1016/j.surfcoat.2015.11.008.
  • [12] Lee JM, Jung KK, Lee SH, Ko JS. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent. Appl Surf Sci. 2016. https://doi.org/10.1016/j.apsusc.2016.02.006.
  • [13] Tian F, Hu A, Li M, Mao D. Superhydrophobic nickel films fabricated by electro and electroless deposition. Appl Surf Sci. 2012. https://doi.org/10.1016/j.apsusc.2011.11.130.
  • [14] Xu N, Sarkar DK, Chen XG, Tong WP. Corrosion performance of superhydrophobic nickel stearate/nickel hydroxide thin films on aluminum alloy by a simple one-step electrodeposition process. Surf Coatings Technol. 2016. https://doi.org/10.1016/j.surfcoat.2016.05.050.
  • [15] Zhang X, Wang L, Levänen E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013. https://doi.org/10.1039/c3ra40497h.
  • [16] Gregory TS, Cheng R, Tang G, Mao L, Tsz Z, Tse H. The magnetohydrodynamic effect and its associated material designs for biomedical applications: a state-of-the-art review. Adv Funct Mater. 2016. https://doi.org/10.1002/adfm.201504198.
  • [17] Tacken RA, Janssen LJJ. Applications of magnetoelectrolysis. J Appl Electrochem. 1995. https://doi.org/10.1007/BF00251257.
  • [18] Osaka T, Asahi T, Kawaji J, Yokoshima T. Development of high-performance magnetic thin film for high-density magnetic recording. Electrochim Acta. 2005. https://doi.org/10.1016/j.electacta.2004.10.099.
  • [19] Koza JA, Karnbach F, Uhlemann M, McCord J, Mickel C, Gebert A, Baunack S, Schultz L. Electrocrystallisation of CoFe alloys under the influence of external homogeneous magnetic fields-Properties of deposited thin films. Electrochim Acta. 2010. https://doi.org/10.1016/j.electacta.2009.08.069.
  • [20] Kołodziejczyk K, Miękoś E, Zieliński M, Jaksender M, Szczukocki D, Czarny K, Krawczyk B. Influence of constant magnetic field on electrodeposition of metals, alloys, conductive polymers, and organic reactions. J Solid State Electrochem. 2018;22:1629–74. https://doi.org/10.1007/s10008-017-3875-x.
  • [21] Koza JA, Uhlemann M, Gebert A, Schultz L. The effect of magnetic fields on the electrodeposition of CoFe alloys. Electrochim Acta. 2008. https://doi.org/10.1016/j.electacta.2008.02.082.
  • [22] Karnbach F, Uhlemann M, Gebert A, Eckert J, Tschulik K. Magnetic field templated patterning of the soft magnetic alloy CoFe. Electrochim Acta. 2014. https://doi.org/10.1016/j.electacta.2014.01.055.
  • [23] Koza JA, Uhlemann M, Gebert A, Schultz L. The effect of a magnetic field on the pH value in front of the electrode surface during the electrodeposition of Co, Fe and CoFe alloys. J Electroanal Chem. 2008. https://doi.org/10.1016/j.jelechem.2008.02.009.
  • [24] Hang T, Hu A, Li M, Mao D. Structural control of a cobalt nanocone array grown by directional electrodeposition. CrystEng-Comm. 2010. https://doi.org/10.1039/b922875f.
  • [25] Rahimi S, Shahrokhian S, Hosseini H. Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays-nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors. J Electroanal Chem. 2018. https://doi.org/10.1016/j.jelechem.2018.01.004.
  • [26] Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 2011. https://doi.org/10.1016/j.apsusc.2010.10.051.
  • [27] Okamoto Y, Adachi T, Maezawa A, Imanaka T. Effect of ZnO addition on cobalt-alumina interaction species. Bull Chem Soc Jpn. 1991. https://doi.org/10.1246/bcsj.64.236.
  • [28] Dash KC, Folkesson B, Larsson R, Mohapatra M. An XPS investigation on a series of schiff base dioxime ligands and cobalt complexes. J Electron Spectros Relat Phenomena. 1989. https://doi.org/10.1016/0368-2048(89)85022-4.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db302acc-2ae5-4169-a087-006f91a0b3bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.