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Abstract

A hybrid procedure of Genetic Algorithms (GAs) aneliability analysis is described, discussed, and
summarized. The procedure is specifically refetreas a Genetic Algorithms-aided (GAs-aided)ak@lity
analysis. Two classes of GAs, namely simple GAsg multimodal GAs, are introduced to solve a nundjer
important problems in reliability analysis. Theolplems cover the determination of Point of Maximum
Likelihood in failure domain (PML), the computatiaf failure probability using the GAs-determined PM
and the determination of multiple design point§he MCS-based method using the GAs-determined RML i
specifically implemented in the so-called an Impooe Sampling around PML (ISPML). The applicatidn
GAs toeach respective problem is then demonstratedwizerical examples in order to clarify the procedur
With an aid from GAs, reliability analysis is pdssi even if there is no information about the getyner
landscape of limit state surfaces and the total bmwnof crucial likelihood points.  In addition, GA
significantly improve the computational efficieneyd realize the analysis of rare events under @nstl
computational resources. The implementation ofsGd reliability analysis for building up the hytbri
procedure is readily because of their algorithrmgpéicity.

1. Introduction The analysis which is based on the hybrid procedure
) _ will be hereinafter referred to as a Genetic
Genetic  Algorithms  (GAs) are global search pigqrithms-aided (GAs-aided) reliability analysis.
techniques that are based on evolutionary theory iRhg gpplication of GAs to reliability analysis is
biological sciences (see e.g. _[4]' [71, [, [1151)' . _aimed at obtaining crucial information needed from
GAs have been employed in several engineeringnq analysis. The crucial information includes Poin
disciplines to_obtain optimal solutions or optimal o \aximum Likelihood in failure domain (PML)
designs [7]. The application of GAs in context of 54 fajlure probability for a given system or eleine

reliability engineering is directed towards relidli  Another important application of GAs in context of
based optimization problems [7]. A most recent gjapijity analysis is the determination of muléip

state-of-the-art survey [8] also shows only theyagign points in multiple failure modes.
application of GAs to reliability-based design the “girycture of the paper starts with the generic

optimization.  While the design optimization IS ¢4 of the optimization problems in reliability
considered a conventional application for GAs, éher analysis. The next main sections contain the

is another potential application. The prospectivey,eqretical background of GAs which presents the
application is relevant to reliability analysis. er'h description of both simple GAs and multimodal GAs,
application of GAs to reliability analysis appe&os respectively. The application of GAs to each
gain less interest and attention compared to th‘?espective problem is then demonstrated via
application to reliability-based design optimizatio . merical examples in order to clarify the
The purpose of this paper is to describe, disarss, procedures. The simple GAs are used in the
summarize the application of GAs to reliability yetermination of PML. The GAs-determined PML is
analysis. further employed in an MCS-based method which is

The procedure combines GAs With reliability specifically referred to as an Importance Sampling
analysis procedure, thus forming a hybrid procedure.o,nq PML (ISPML). The multimodal GAs are
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employed in the determination of multiple design use only the information of objective function, not
points. The crucial aspects of the paper will tben the function derivatives or other auxiliary

summarized at the end. knowledge. The required information is the
numerical value of the objective function. Third,

2. Generic form of optimization problemsin GAs do not impose much mathematical requirement

reliability analysis about the optimization problems. Yet, the algorithm

o ) ] are simple and readily to be implemented.
Optimization problems that appear in context afarel Accordingly, GAs are robust and thus applicable
bility analysis include constrained and unconsgdin \yhenever the numerical value of the objective
optimization problems. Optimization problems genefynction can be determined. The second and third
rally aim at maximization or minimization of object it es make GAs attractive to reliability analysis
ve functions. The constrained optimization prable complex systems where the associated Limit State
for maximizing an objective function is expressed a E(nctions (LSFs) can be implicit, nonlinear, non-

o differentiable, and noisy. Those types of LSFs are
Maximize  O(x) (1) thus characterized by numerical values only.
: GAs procedure starts with an initial set of randpml
Subjectto  g,(x)<0 (21) select)ed trial solutions, namely population.djéach
individual in the population is encrypted and refer
. to as a chromosome which represents a possible
g;(x)<0 (21) solution to the optimization problem. The
chromosomes evolve through successive iterations,
®C) called generations. _In each generation,_ the fitioéss
each chromosome is evaluated. The fitness of each
chromosome reflects the potential to be the optimal
, where o,(x) is the objective function of sol_utio_n. Each chrom_osome is reproduced acco_rding
r . . to its fitness value. Fitter chromosomes have highe
X=[X1 e X XN] - % s the kih design probabilities to be selected for reproduction whsre
variable. N is total number of design variables. weaker chromosomes tend to die off. The
g,(x) is thejth constraint.NC is total number of chromosome selection and reproduction are carried

constraints. The constrained maximization problemout in a reproduction process. The chromosomes
is found in the determination of PML and multiple resulting from the reproduction process form a

gue(x)<0

design points. mating pool and are collectively referred to as
offspring. The offspring are later undergone geneti

3. Simple GAs operations. The exploration of search space isecarr
out through the genetic operations where genetic

3.1. General on GAs operators are applied to existing chromosomes and

%ansform them into new chromosomes. The genetic
operators-derived chromosomes represent new trial
solutions in the search space. The resulting

structured information exchange using randomizectchromo.Somes then form the new genera‘qon of
operators to evolve an efficient search mechanisrrPOpUIat'on' It ShO.UId be noted that C.;AS work in two
[9]. GAs have been utilized to successfully solve SPAcES al_ternatlvely. The_ .selectlc_)n process s
various optimization problems in which the optimal performed in the space of original variables wifle

solutions are searched and determined by GAs [segenegf opsr?:]lons are donefm tr:jet spacteh Qf c|o<tjed
e.g. [7], [4]. Major virtues of GAs are as follows, variables. Both spaces are reterred 1o as thelsol

among others [9], [15], [7]. First, GAs are aand coding space, respectively [7]. The GAs ¢earc

population-based search and use probabiIistidsenzgpg;ite:a ;NZ?; s:d Prrﬁscr'rkéig d r:gn;?eé AsOf's
transition rules to direct the evolution of thersba 9 : v psed. P u !

In other words, GAs make a remarkable balancesummalrlzed iFigure 1.

between the exploitation of the best solution dred t
exploration of the search space. The population-to-
population approach and the probabilistic transitio
rules attempt to make the search escape from local
optima. Correspondingly, the possibility of being
trapped in local optima when searching for the
design point can be reduced using GAs. Second, GAs

GAs are a stochastic search technique based on t
mechanism of natural selection. It combines
Darwin’s principle of survival of the fittest and a
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decimal number. The obtained decimal number is

—] then transformed into the binary number.
[ oo | e
4 4 4
e O™ CEE
: 4
_wi S-S ) 1 K D O D D
| no Figure 2 Chromosome representation using binary
s operations coding for real values [15].
crossover
L mutation

As an example, the design variables srend x,,
Figure 1 GAs search procedure [4], [7], [9], [15].  both of which have the same domain boundaries [-
1,1]. Suppose that the desired precision is three
3.2. Chromosome representation decimal places for each variable. Therefore, the
required number of bits for each variable is 11 and
GAs encrypt each trial solution into a sequence Ofthe total length of the binary string is thus 28sbi
numbers or strings and denote the sequences asTge decoding of a binary-coded chromosome
chromosome. In this paper, a simple binary codingaccording to this example is illustrated Table 1

for real values as proposed by [15] is employed.gng Figure 3, respectively.s is a binary string
According to the utilized coding scheme, eachygpresenting thith chromosome.

variable x; in solution space is represented by a
of these strings forms a chromosome in codinggecimal numbers.
space. The evaluation of chromosome fitness is done

in the solution space of; while the genetic Variable Binary Number Decimal

operations are performed in the coding space of Number

chromosome. The binary coding for real value$ wil X1 11110001001 1929

be briefly explained here. More details can be ébun X2 01001101110 622

in [15]. In context of GAs-aided reliability analgs

each variable value is corresponding to a reatinati ; 7

of a random variableg. According to the binary ¢ |

coding for real values, the length of the binanngs 4] of1|ole]fo]afofo]t]1|o]s]1|1]0

depends on the required precision. When the domain

of variablex; is bounded by lower boundally; and k il e ik |
, - y " (

the upper boundaryb, and the required precision X X3

needsd places after the decimal point, the range of
the domain of each variable should be divided &ito

Ieast(ubj ~Ib, )xlo" size ranges. The required Hits
for the variable is then obtained from 3.3. Reproduction process

Figure 3 A binary-coded chromosome for real
values.

Reproduction in GAs is a process in which individua
chromosomes are copied according to their fithess
values. Copying chromosomes according to their
The encoding, i.e. from a real number to a binaryfitness values implies that a chromosome with highe
string, and the decoding follow the relation fitness value has a higher probability of contribgt
one or more offspring in the next generation. This

ub; —lb; operation imitates the survival of the fittest bt
e B 4) : . o

ol _1 natural selection as used by Darwin in [3]. Fitniess
natural population is determined by the abilityaof

, wheredecimal (substring) represents the decimal creature to survive predators, pestilence, and the
value of substring for variable x in the solution Other obstacles to adulthood and subsequent

space. The decimal value is also referred to as the F€production. Fitness in an optimization by GAs is
defined by a fithess function. Based on the

optimization problem as described by Eq. (1) ard th

27 <(ub, ~Ib, )x10% < 2" 3)

X; =lb; + decima(substring )x

147



Harnpornchai Napat
Genetic Algorithms-aided Reliability Analysis

set of constraints (2), the fitness functib(x) of a 3.4 Genetic operators
chromosome representing a veckoof variables in

the solution space is defined as Cross-over and mutation are genetic operators.

Crossover operates on two chromosomes at a time
and results in two new chromosomes. A simple
0,(x)  xisfeasible binary crossover with two cut point is illustrated

— 5 .
F(x)= Ol(x)—iclkjvj (x) ;xisinfeasibls ®)  Figure 4.
=

Parent Chromosomes New Chromosomes

EIEEEREREREIEIRIENER Ll faTofofo[a[4T4]r]

An adaptive penalty scheme which is introduced by

[1] and improved by [17] will be employed to handle [e]o]o[°ToTo[0 0 0]o] [o]o]o][ 11 ]"]0]0]0]0]
the constraints. The improved adaptive penalty CROSSOVER
scheme shows its excellent capability in handling ¢ T_'_T
very large number of constraints [10]. This adagptiv Cut Points
scheme is given by Figure 4 Crossover of two chromosomes.
Mutation operates on a chromosome by mutate a
K, = ‘ma>(01i”f (x)) . <v;(x)> (6) gene in a chromosome to produce new chromosome.

C[<v(x) >]2 A binary mutation converts the randomly selected
: genes from 0 to 1 or from 1 to O (deigure 5.

1=1

Parent Chromosomes |1‘1I1‘c‘c‘c‘1‘1‘1‘1|

, where maxX0,™(x)) is the maximum of the
objective function values in the current populatio

the infeasible region(x) is the violation magnitude New Chromosomes [ 111 [1]7]¢ [¢[cl1]1]1]
of the jth constraint. ¥%(x)> is the average ofj(x) T_'_T

over the current populationk is the penalty

parameter for theth constraint defined at each

MUTATION

Mutated Genes

generation. The violation magnitude is defined as Figure 5 Mutation on a chromosome.
0. (x) :9(x)>0 4. Multimodal GAs
v (X) _JI9 9 . )
0  ;otherwise 4.1. General

Simple GAs perform well in locating a single
The reproduction operator may be implemented in eptimum but face difficulties when requiring
number of ways. The easiest and well-knownmultiple optima [5], [13], [14], [16], [18]. Everhere
approach is the roulette-wheel selection (see4d,g.[ exist multiple optima in the search space, the Emp
[9]). According to the roulette-wheel scheme, jie  GAs will converge to a single optimal point. Thss i
chromosome will be reproduced with the probability the result of genetic drift, which is the tenderdy

of the GAs to converge over time to one optimal point
within the search space [16]. The term genetid drif
F explains the effect of a loss of population divigrsi
P = Yoo — (8)  that occurs due to the stochastic nature of seledt
ZFI a finite population [12]. As to avoid the solution
I=1 population to converge to a single optimal point,

mechanisms of diversification have been proposed to
, in whichNp,, is the population or sample size. The force GAs to maintain a diverse population [5],][13
fitness valueF, is obtained from Eq. (5). On passing, [14]. Niching methods extend the simple GAs to
it should be noted that GAs utilize only the maintain the population diversity and provide the
numerical values of the objective function andtef i stability of subpopulations in the vicinity of optal
associated constraints for the evaluation of thesolutions in a multimodal domain [5], [13], [14].
chromosome fitness (confer Egs. (5) to (7)). ThisNiching method thus can identify the multiple
advantageous feature makes GAs readily applicableolutions with certain extent of diversity [16].
to real-world problems where the LSFs are generallyAmong niching methods, Standard Crowding
implicit with respect to random variables. Genetic Algorithms (SCGAs) [5] and Deterministic

Crowding Genetic Algorithms (DCGAs) [13], [14]

148



SSARS 2009
Summer Safety and Reliability Semindidy 19-25 2009 Gdaisk-Sopot, Poland

have been commonly used in multimodal functions4.2. Deterministic crowding niche genetic
optimization. These two methods will be used asalgorithms (DCGAS)

tools for locating multiple design points herein. | _ _
should be noted that both SCGAs and DCGAs,Mahfoud [13], [14] proposed a simple multimodal
however, are originally designed for unconstrainedGAS and is known as Deterministic Crowding Niche
optimization problems. To handle the constraint (2) Geénetic Algorithms (DCGAS). DCGAS work as
the adaptive penalty described in the previouseect follows. First all population elements are grouped

will be used in both SCGAs and DCGASs. into N/2 pairs, whereN is number of population. The
crossover and mutation are the applied to all pairs

4.2. Standard crowding genetic algorithms Each offspring_ competes age_linst one c_)f the parents
(SCGAS) that produced it. For each pair of offspring, tvedss

of parent-child tournaments are possible. DCGAS
SCGAs was proposed by De Jong [5]. The intentionhold the set of tournaments that forces the most
of the methodology is to preserve diversity andvslo similar elements to compete. Like in sharing,
down convergence on multimodal functions, similarity can be measured using either genotype or
specifically Shekels Foxholes multimodal function. phenotype distance. The DCGAS is indeed a special
Premature convergence is reduced in SCGAs byase of SCGAS where the crowding fact@f,
minimizing changes in the overall population equals to 2. They were developed to improve De
distribution between generations [16]. According Jong’s basic crowding scheme. The following
SCGAs, the procedure revises the population byprovides a pseudo code of DCGAS [2].
replacing similar parent. The replacement for each

offspring produced is considered individually. For NPop :  Population size.

each such individual, a sample of crowding factor d(x, y) : Distance between individuatsandy.
(CF) individuals are randomly drawn from the parent F(X) . Fitness of individual population
population and searched for the most similar bit- member.

string to the offspring in question. Similarity is
measured as the number of point differences between 1. Randomly initialize population.
the equal length bit-strings, called the Hamming 2. Evaluate fitness of population.

distance. The most similar individual from the sdmal 3. Loop until stop condition:
sample, i.e. fronCF, is then directly replaced in the a. Shuffle the population.
population by the offspring, without regard for b. Crossover to produdgPop?2 pairs of
fitness [2]. The following provides the pseudaleo offspring.
of SCGAS [2]. c. Apply mutation (optional).
d. Loop for each pair of offspring:
G . Generational gap; ratio of the i f
reproduced population in each (d(parentl,child1)d(parent2,child2))
generation. <
NPop : Population size. (d(parent2,childl)d(parentl,child2)).
CF . Crowding Factor; the size of sample 1. If F(childl) > F(parentl),
taken from population and searched for childl replaces parentl.
the most similar. 2. If F(child2) > F(parent2),
child2 replaces parent2.
1. Randomly initialize population. i. Else
2. Evaluate fitness of the population. 1. If F(childl) > F(parent2),
3. Loop until stop condition: childl replaces parent2.
a.Select population set of si@x NPopby 2. If F(child2) > F(parentl),
fithess proportion. child2 replaces parentl.
b. Crossover to generatx NPopoffspring.
c.Evaluate fitness of offspring. Instead of using De Jong’s crowding factor, DCGAS
d. Loop for each offspring: method compares the new offspring directly to their
i. Randomly select sample size@F parents. The parents are replaced only if the idnld
from the parent population. have higher fitness [2].

ii.  Search for most similar in sample in
comparison with the offspring.

iii. Replace most similar in population
with offspring irrespective of fitness.
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5. Applications of algorithms to reliability
analysis

5.1. Deter mination of PML

5.1.1. Problem formulation

Since PML is the point of highest probability dewpsi
function in the failure domain, the PMt* can be
obtained from solving the following optimization
problem:

Maximize 0,(x)= f, (x) 9
Subject to g,(x)<0 (10.1)
o 650 w0
9uc(x)=0 (10NC)

in which fy(x) is the Joint Probability Density
Function (JPDF) oK = [X; ... %]" andgj(x) ( = 1,
..., NC) is thejth LSF. N and NC are the total

number of basic random variables and the totals

number of limit state functions, respectively. The
corresponding fitness function is

0,(x) ; xisfeasible

T10:(x) - > kv, (x) ;xisinfeasibl

=1

F(x)
, Wherek; andyv;(x) are defined as in Egs. (6) and (7),

respectively.

5.1.2. Numerical example 1: a plate with an
edge crack [19]

f.(a)

1 a
Lo _2) 0
HMa M
, Where the mean crack depthh is 6 mm. The
thickness of the plate is constant and determmisti
The thickness in this example is set equal to 160 m
The tensile stres§ and the bending stres§ are

modelled by normal random variables. Accordingly,
the PDF ofSis

fals)= Elm ex{— s 2_0_‘?) ] (14)

where g and g is the mean and standard deviation
of §, respectively. Similarly, the PDF & is

fSo(Sb)z\/Z::_a_ exf{_ (sz_al;s;)J (15)

in which g, and oy is the mean and standard
deviation ofS,, respectively. The mean tensile stress
is 20 MPa and the associated Coefficient of
Variation (COV) is 0.10. The mean bending stress
U 1S 10 MPa and the corresponding COV is 0.20.
The fracture toughnesk,. is modelled by three-

parameter Weibull random variable with the
Cumulative Distribution Function (CDF) [20].
Ko =Ko )
Fae (ki) =1-ex —(—“ j (16)
ko - kmin

, where F(k.) is the cumulative distribution

function of fracture toughnesg,, is the location
parameterk, is the scale parameter, abdis the

Consider a plate with an edge crack. When theshape parameter. Mean toughness in terms of the
cracked plate is loaded in combined tensile andWeibull distribution parameters is

bending, the total stress intensity factkr is

| -total
given by:

I-total —

K K +K

I-tension I-bending

= [St F (A/ t)tension + Sb F (A/ t)bending]m (12)

where K,__ . is the tensile stress intensity factor
and K .., IS the bending stress intensity factfr.

is the tensile stress§, is the outer-fiber bending
stress, A is the crack depth and is the plate
thickness.A, S, and S, are statistically independent
random variables. The crack deghis modelled by
the exponential random variable whose PDF is

150
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:uKIc = kmin + (ko - kmin )/_(1-'_ Ej (17)

in which /{.) is the gamma function. Standard
deviation is then equal to
_kmin

Aol e

The mean toughnegs is 200 MPaVm . b = 4 and
Kmin = 20 MPa/m . The corresponding PDF &j. is
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ol )=—2 (k‘kj (k*kJ Ofas, s, k)= fa(@)fals)fe(s) frclke) (23)

= Ko =Kpin

o~ \ Ko = 19 The magnitude of the constraint violation, accogdin

to Egs. (7) and (22), is

All random variables including the associated mean

and COV values are summarized Table 2 The Kk —k. (as. glas.s.k )50
T e A

original JPDF is thus 0 - otherwise

_ 24

fra(x:) = fa(@)fa(s ) fo(s,) fuc(ke) (20 %)
_ It is noted from Eq. (12) thag, o is the function of

, where x, =[A s 5, K.]' Is the vector of all A 5 andS, The fitness function is thus

random variables.

Flas.s, k ):{ Ofa,s.s, k) 1g(as,s, k. )<0

Table 2 Description of random variables in Example """ |0(as.s,.k.)-k{as,.s,.k.) :9(as.s,.k,)>0
1. (25)
Rar_ldom Distribution Mean cov Table 3 PML in Example 1.
Variable Type

A Exponential |  6.00x1®m 1 PML Magnitude at PML

S Normal 20 MPa 0.10 a 84.4x10° m

S Normal 10 MPa 0.20 s 20.0 MPa

Kic 3-parameter| 200 MPa/m | Egs. (18) S 10.0 MPa

Weibull and (19) ke 205 MPa/m

Tada [21] gives several formulas f6i(A/t). The  GAs search employs the population size of 100. The

following formulas are used in this example and/the number of generations used in the search is 100. A

are applicable for anivt. two-point crossover is utilized with the crossover
rate of 0.8. The mutation rate is taken as 0.002.

3 . . .
A Figure 6 shows the history of the average fitness of
0.752+ 202(A/t)+ 037{1 sm(ﬂ the feasible chromosomes. The resulting PML is

F(A/t)crsin = (21.1)  shown inTable 3Although the LSFs in the example
CO{ZJ is explicit, the numeric -based feature of GAs
naturally enable the algorithms applicable to thgec
2t A R
x Eta ZJ of_|mpI|C|t LSFs. _ o
With respect to this feature, the approximation of
\ implicit LSFs is not necessary. The error from such
0923+019£{1—sir(mﬂ (21.2)  an approximation is thus not encountered.Based on
o ' 2t the introduced concept and implementation, GAs is
bending ™ 7A readily applicable to higher dimensional problems.
CO{ZJ Due to the algorithmic  simplicity, the

o pry implementation of GAs does not require any
x tar(} additional effort.
TA 2t

Average Fitness of
Feasible Chromasomes

F(Alt)

The LSF is defined as Fyerd

2.50E08 I e e T e i
g(KI—totaI' ch) = ch - KI—totall (221) i:::ij:
1.00E08
or g(A’St'Sb'KIc): ch _Kl—totaI(A’S1Sb) (222) ;-.!;]';!:i: T T T T T 1
0 20 40 60 80 100

generation

in whichK| is the fracture toughness.
GAs have been applied to determine PML first. TheFigure & The history of the average fitness of the
objective function according to Eq. (9), is feasible chromosomes.
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5.2. GAs-aided importance sampling I fv )fx(Yj lu=u,) (30)
o T oONsimSG V(Y (=X
5.2.1. Principles
The probabilityp: of a failure evenf is obtained 5.2.2. Numerical example 2: a plate with an
from edge crack [19]
- [, (x) (26) Based on the GAs-searched PML, the ISF takes the
Pe _Df x \X X form defined by Eq. (29) with the mean equal to
: PML, i.e.

, Where Dr is the subspace corresponding to the

failure event~ in a multidimensional space #i,..., u=|a"

Xy and will be referred to as the event or failure

domain.fx(x) is the JPDF 0K,,..., Xy. Using the  The ISF as defined by Eq. (29) is used for comutin

importance sampling technique, Eq. (26) is modifiedthe failure probability according to the LSF (22he

to results are compared with MCS and shown in
Figures 7, 8,and Figure 9. The estimate of the

(27.1)  failure probability in each MCS and ISPML
methodology is based on 10 independent runs. The
sample sizes shown in all figures are the values us

(27.2)  in each respective run.

s ) K[ (31)

f
O p. =[i(y) X(yghx(y)dy o
stimate
o NCS
206

1.60E-06

Note that the subscripth signifies that the

expectatiork is taken with respect to an importance  1.#€-o6 . o o
sampling PDF or Importance Sampling Function 1.6 " 3 -
(ISF) hx(x). The failure probability is estimated as bmzgeldl . _ _ . _
10 100 1004 10000 1 1
b= 1 NsimI (Y \ fX (YJ) (28) Sample Size
" Nsimg h (Y Figure 7. Estimates of failure probability from MCS
and ISPML.

in whichYjis thej-th sample from the ISRx(x) and

Nsim IS the sample size. Figure 7 shows that the estimated failure probability
The PML obtained from GAs search can enhance thés at the order of 0 The theoretical sample sizes
efficiency of Monte Carlo Simulation (MCS). The required by MCS for the estimation are at least 10
efficiency enhancement is accomplished byThe same figure also shows the sample sizes used by
employing the GAs-searched PML as the samplinglSPML in order to compute the failure probabiliti.
center of the ISFhy(x). This sampling scheme is is obvious that the sample sizes used by ISPML are
denoted as an Importance Sampling around PMLmuch smaller than the theoretically required sample
(ISPML). For the purpose of procedure clarity, the sizes for MCSFigure 8shows the variation of COV
original JPDFix(x) will be rewritten adx(X|u=4) in ~ Wwith respect to different sample sizes in both MCS
which g denotes the mean vector. i is the original and ISPML cases. The rate of COV reduction with

mean vector. According to the ISPML, the IBfx)  féspect to sample size in case of ISPML is

takes the form significantly higher that that in case of MCS.
. Estimate COV
hy (X): fx (X|,u =X ) (29) 1.00 ol
030 a
, wherex” is PML. That is the ISF has the same :j:
functional form as the original JPDF. The mean Pt . 5
vector of the ISF, however, is different from thdit 0.00 + . . g g ; .
the original JPDF and takes the PML as the mear 0 ane MM 0N SENRE I
vector. Consequently, the estimate of the failure Sample Size
probability is Figure 8 Effect of sample size on estimate COV.
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PG iag to provide means of handling constraints. The
ARTAIBATAG ® ol adapt_ive pgnalty tgchnique as proposed _in [17] _and
10000000 o L described in Section 3.3 will be combined with
" 00000 7 @ © SCGAs and DCGAs for handling constraints.

it
190 ]

1 — — 5.3.2. Problem formulation
(1} o1 02 03 04 05 06 0T 08 09 1

From the definition of the design point, the design
point U* is obtained from solving the following
Figure 9 Sample sizes used by MCS and ISPML,  constrained optimization problem:

with respect to the estimate COVs.

Estimate COV

. N . Minimize = 32
The same information ifigure 8is rearranged and nimiz o) vl (32)

plotted inFigure 9 Symbols® and @ in Figure 9 _ _

indicate that MCS employs the sample sizes Subjectto constraintsg(u)=0
approximately 1,000 times larger than ISPML uses in

order to attain the same confidence level of eséima in which U = [U; ... W] denotes the vector of
or estimate COV. ISPML is thus more efficient than standard normal variableg(U) is the LSF.N is the
MCS with respect to the quality of the estimate andtotal number of basic random variablggJ) = 0 is
the computational resource consumption. In this,[he limit state surface ang(U) < O indicates the

respect, GAs significantly contributes to the , . .
reduction in computational complexity. GAs also failure state corresponding to teSF. For the

realizes the estimation of failure probability inet ~ Constrained optimization above, there may exist
situation where the size of sampling is limitedtbg ~ Several optima whose objective function values are
availability of computational resources. According of similar magnitudes to the global maximum.
the numerical results, the computation of failure Erroneous results occur if the optima from whicé th
probability can demand considerable computationngighborhoods have significant contributions to the

resource although the system dimension is large. reliability assessment have not been located and so

In summary, GAs can be used as tool for enhancinq1 b lected. It is. theref ¢
the efficiency in risk analysis by providing such ave been negiected. 1t 1s, therelore, necessary 10

crucial information as the PML which is then locate global optimum as well as local optima. This
employed in the analysis procedure. can be achieved by solving a constrained multimodal

optimization problem of the form (32) and (33).

(33)

5.3. Deter mination of multiple design points

o 5.3.3. Numerical example 3: a highly non-
5.3.1. Problem characteristics linear limit state function

Design point is the point on the limit state suefac This example considers the following complicate
that is nearest to the origin in a standard normal Sf as introduced in [17].

space. In optimization context, the design poirhés

global minimum obtained from solving a constrained  g(U,,U,)=6-cod5U,)-U, (34)
optimization problem. However, it is possible that

there are other local minima whose distances to thevhere U; and U, are independent standard normal

origin are of similar magnitudes to the global yariables. Although the problem is of low dimension

minimum. The global minimum and local minima he Kymose of this problem is to illustrate the
with similar magnitudes lead to the situation of

. . : . . .~ _capability of multimodal GAs in determining
multiple design points. When multiple design points } ) ) L :
exist, the reliability analysis based only on aimgke multiple design points under situation of highly
design point among the multiple design points maynonlinear LSF.Figure 10 displays the plot of the
result in an underestimation of failure probability limit state surface in 2-dimensional space. The plo
Determination of global optimum as well as local of the limit state surface shows that all localimat

opt?mg _belongs to a multimOdal_ function are at the base or bottom of the wavy limit state
optimization. The following section intends t0 ¢ t.0

demonstrate the application SCGAs and DCGAs to
the determination of multiple design points. Since
SCGAs and DCGAs are originally designed for
unconstrained optimization problems, it is necessar
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The evolutions of the search using SCGAs approach
are shown inFigure 11 The evolution also shows
the so-called genetic drift effect.

m

Figure 10.The limit state surface as in Eq. (34).
4 .3 .2 101 2 3 4 4 -3-2-101 2 3 4

The equality constraint (34) is modified to an 7 71

equality constraint for the purpose of its handling

) . e a) I generation b) 10generation
The resulting equality constraint is

9,(U,,U,)=]6-codau,)-U,|-o (35)

T

.whereois the tolerance of being null. The valuedof 4 _'3 2401 23 4 P EEEE Y
is set to a small value to ensure that the obtained

. . . m T
solution is closed to the limit state surface asmas

possible. c) 20" generation d) 8bgeneration
Since GAs are originally designed for maximization
problems, the fitness function according to the
expressions (32) and (33) is defined as

e e
A |

5L

________________________

4 321012 3 4 4 -3-2-101 2 3 4

1 36
F(Ul'UZ):m (36) 7 m
1"~ 2
e) 80" generation f) 100" generation
H(Ul,Uz):{ o,.u,) 105(U,U,)<0 Figure 11Chromosomes distribution at various
O(Ul’U2)+k\'(U1’U2) ;93(U1’U2)> generations by SCGAs in Example 3.
(37)

38 The genetic drift normally happens with the niche
o, U,)=yu7 +U; (38)  methods such as SCGAs and DCGAs.The genetic
drift leads to the possible lost of the alreadytaeg
The magnitude of the constraint violation, accogdin gptima. The optima found by SCGAs are also shown
to Egs. (7) and (35), is . . :
in Table 59 in Eg. (35) is equal to 0.01.

u,,U 70.U,,U,)>0
v(Ul,Uz):{ga( vUa) 59U U2) (39)  Table 4 SCGAs parameters for Example 3.

0 ; otherwise

Parameters Value
Both SCGAs and DCGAs are employed to search fof NPop 500
design points in the domain of [-440,7]. The P 1.00
search results from each respective algorithm are G:: 0 1
separately shown in the following subsections. It :
should be noted in Eq. (37) that the penalty tesm i CF 0.2
added to the objective function (38), instead of Number of Generations 100
subtracting it, because the problem is a minimirati
problem. 5.3.3.2. DCGAS
5.3.3.1. SCGAs The parameters for the DCGAs are giverTable 6

] ] The search results by DCGAs at different
The parameters for the SCGAs are giveiiable 4.
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generations are shown kgure 12 Jin Eq. (35) is
equal to 0.01. The optima are summarizedable 5
The GAs results explicate that both SCGAs and
DCGAs have noticeable  capabilites in Vg ple ety Ak A
simultaneously locating several design points under o 452012 3 4

432101 2 3 4
the LSFs with high non-linearity and irregular . -
geometry. Regarding to two utilized multimodal
GAs, it is possible that the found design points in &) L' generation b) 1Dgeneration

early generations can be lost due to the inherent
genetic drift. When considering from the plots of
population distributions at different generations,
DCGAs are more stable in maintaining the found
results than SCGAs. The numerical results also <3210 1234 432101234
suggest that DCGAs provide better quality of o m
solutions than SCGAs. It should be noted that the
multimodal GAs work in a different manner from the
sequential search methods, such as the gradient-
based methods, where the decision on the numbers of N;L_I'”
the desired design points must be made by the user. -
It is possible that some significantly contributing
design points may be ignored if the search is €dpp
before total numbers of the influential design p®in m m
are obtained. In that case, the failure probabibty
certainly underestimated. The multimodal GAs,
therefore, naturally circumvents such a difficulty. Figure 12 Chromosomes distribution at various
generations by DCGAs in Example 3.

c) 20" generation d) 5bgeneration

4-3-2-101234 4 -3-2-101 2 3 4

e) 80" generation f) 100" generation

Table 5 Comparison of exact multiple design points
with the design points from SCGAs and DCGAs. 6. Conclusion

Optima al X Application of Genetic Algorithms (GAs) to
Exact | SCGAs| DCGAY Exagt SCGAs DCGAs . . . . .

1 375 3711 374 500 514 50d reliability analysis is described, discussed, and
2501 2651 2511 500 5.54 500 Summarized in this paper. Simple GAs and
-1.25| -1.21| -1.26] 5.00 5.10 500 Multimodal GAs are addressed. GAs are applied to
000] -007) 0.01| 500 5.09 5.00  solve key problems in reliability analysis. The
;?2 ;-;Z ;?g Z'SE :22 :'g(c: problems include the determination of the Point of
375 375 3751 500 508 03 Manmum leellh(?od in fallur.e. dom.aln (PML), the

computation of failure probability using the soledl
Importance Sampling around PML (ISPML), and the

determination of multiple design points. GAs-aided

N OO B~ WIN

Table 6 DCGAs parameters for Example 3.

Parameters Value reliability analysis requires no approximation of
Npop 500 Limit State Functions (LSFs) although the LSFs are

P. 1.00 implicit, non-linear, non-differentiable, and noisy
Number of Generations 100 Consequently, the computational modeling errors of

LSFs are circumvented. The numeric-based feature
of GAs also makes the requirement on the
knowledge and visualizability of the geometry or

landscape of limit state surfaces become
unnecessary. The capability in the reliability gsé

of complex systems, where their knowledge is not
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always given and their visualizability are gensrall [9] Goldberg, D.E. (1989)Genetic Algorithms in
not possible, is thus enhanced. From the viewgaint

computational
efficiency with

performance, the computational
respect to the sample size

significantly improved via the utilization of GAs-

searched PML in

ISPML and the substantial

reduction in sample size. The reliability analysfs
rare events can be realized even if the compuiation
resources are limitedly provided. In case of midtip
design points, the population-based nature of G

can be advantageously employed to automatically

detect pointsilz

those crucial information

simultaneously. Unlike sequential search algorithms
the information about the number of design poists i

not necessary. The multimodal GAs, thereforgl3]

reduces the possibility of missing influential dgsi

points. Finally, the algorithmic simplicity of GAs
implantation is considered a highly attractive feat

from the viewpoint of software engineering and

practical application.
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