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1. Introduction 
 

Genetic Algorithms (GAs) are global search 
techniques that are based on evolutionary theory in 
biological sciences (see e.g. [4], [7], [9], [11],[15]). 
GAs have been employed in several engineering 
disciplines to obtain optimal solutions or optimal 
designs [7]. The application of GAs in context of 
reliability engineering is directed towards reliability-
based optimization problems [7]. A most recent 
state-of-the-art survey [8] also shows only the 
application of GAs to reliability-based design 
optimization. While the design optimization is 
considered a conventional application for GAs, there 
is another potential application. The prospective 
application is relevant to reliability analysis. The 
application of GAs to reliability analysis appears to 
gain less interest and attention compared to the 
application to reliability-based design optimization.   
The purpose of this paper is to describe, discuss, and 
summarize the application of GAs to reliability 
analysis. 
The procedure combines GAs with reliability 
analysis procedure, thus forming a hybrid procedure. 

The analysis which is based on the hybrid procedure 
will be hereinafter referred to as a Genetic 
Algorithms-aided (GAs-aided) reliability analysis. 
The application of GAs to reliability analysis is 
aimed at obtaining crucial information needed from 
the analysis. The crucial information includes Point 
of Maximum Likelihood in failure domain (PML) 
and failure probability for a given system or element.   
Another important application of GAs in context of 
reliability analysis is the determination of multiple 
design points in multiple failure modes. 
The structure of the paper starts with the generic 
form of the optimization problems in reliability 
analysis. The next main sections contain the 
theoretical background of GAs which presents the 
description of both simple GAs and multimodal GAs, 
respectively. The application of GAs to each 
respective problem is then demonstrated via 
numerical examples in order to clarify the 
procedures. The simple GAs are used in the 
determination of PML.  The GAs-determined PML is 
further employed in an MCS-based method which is 
specifically referred to as an Importance Sampling 
around PML (ISPML). The multimodal GAs are 
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A hybrid procedure of Genetic Algorithms (GAs) and reliability analysis is described, discussed, and 
summarized.   The procedure is specifically referred to as a Genetic Algorithms-aided (GAs-aided) reliability 
analysis.   Two classes of GAs, namely simple GAs and multimodal GAs, are introduced to solve a number of 
important problems in reliability analysis.   The problems cover the determination of Point of Maximum 
Likelihood in failure domain (PML), the computation of failure probability using the GAs-determined PML, 
and the determination of multiple design points.   The MCS-based method using the GAs-determined PML is 
specifically implemented in the so-called an Importance Sampling around PML (ISPML).   The application of 
GAs to each respective problem is then demonstrated via numerical examples in order to clarify the procedures.   
With an aid from GAs, reliability analysis is possible even if there is no information about the geometry or 
landscape of limit state surfaces and the total number of crucial likelihood points.   In addition, GAs 
significantly improve the computational efficiency and realize the analysis of rare events under constrained 
computational resources.   The implementation of GAs to reliability analysis for building up the hybrid 
procedure is readily because of their algorithmic simplicity. 
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employed in the determination of multiple design 
points. The crucial aspects of the paper will then be 
summarized at the end.  
 
2. Generic form of optimization problems in 
reliability analysis 
 

Optimization problems that appear in context of relia
bility analysis include constrained and unconstrained 
optimization problems.   Optimization problems gene
rally aim at maximization or minimization of objecti
ve functions.   The constrained optimization problem 
for maximizing an objective function is expressed as 
 
   Maximize ( )x1O                    (1) 

   Subject to       ( ) 01 ≤xg                                     (2.1) 

      … 

  ( ) 0≤xjg               (2. j) 

      … 

  ( ) 0≤xNCg                               (2.NC) 

 
, where ( )x1O  is the objective function of 

[ ]T
Nk xxx KK1=x . xk is the kth design 

variable. N is total number of design variables.   
( )xjg  is the jth constraint. NC is total number of 

constraints. The constrained maximization problem 
is found in the determination of PML and multiple 
design points. 
 
3. Simple GAs 
 

3.1. General on GAs 
 

GAs are a stochastic search technique based on the 
mechanism of natural selection. It combines 
Darwin’s principle of survival of the fittest and a 
structured information exchange using randomized 
operators to evolve an efficient search mechanism 
[9]. GAs have been utilized to successfully solve 
various optimization problems in which the optimal 
solutions are searched and determined by GAs [see 
e.g. [7], [4]. Major virtues of GAs are as follows, 
among others [9], [15], [7]. First, GAs are a 
population-based search and use probabilistic 
transition rules to direct the evolution of the search. 
In other words, GAs make a remarkable balance 
between the exploitation of the best solution and the 
exploration of the search space. The population-to-
population approach and the probabilistic transition 
rules attempt to make the search escape from local 
optima. Correspondingly, the possibility of being 
trapped in local optima when searching for the 
design point can be reduced using GAs. Second, GAs 

use only the information of objective function, not 
the function derivatives or other auxiliary 
knowledge. The required information is the 
numerical value of the objective function. Third, 
GAs do not impose much mathematical requirement 
about the optimization problems. Yet, the algorithms 
are simple and readily to be implemented. 
Accordingly, GAs are robust and thus applicable 
whenever the numerical value of the objective 
function can be determined. The second and third 
virtues make GAs attractive to reliability analysis of 
complex systems where the associated Limit State 
Functions (LSFs) can be implicit, nonlinear, non-
differentiable, and noisy. Those types of LSFs are 
thus characterized by numerical values only. 
GAs procedure starts with an initial set of randomly 
selected trial solutions, namely population. Each 
individual in the population is encrypted and referred 
to as a chromosome which represents a possible 
solution to the optimization problem. The 
chromosomes evolve through successive iterations, 
called generations. In each generation, the fitness of 
each chromosome is evaluated. The fitness of each 
chromosome reflects the potential to be the optimal 
solution. Each chromosome is reproduced according 
to its fitness value. Fitter chromosomes have higher 
probabilities to be selected for reproduction whereas 
weaker chromosomes tend to die off. The 
chromosome selection and reproduction are carried 
out in a reproduction process. The chromosomes 
resulting from the reproduction process form a 
mating pool and are collectively referred to as 
offspring. The offspring are later undergone genetic 
operations. The exploration of search space is carried 
out through the genetic operations where genetic 
operators are applied to existing chromosomes and 
transform them into new chromosomes. The genetic 
operators-derived chromosomes represent new trial 
solutions in the search space. The resulting 
chromosomes then form the new generation of 
population. It should be noted that GAs work in two 
spaces alternatively. The selection process is 
performed in the space of original variables while the 
genetic operations are done in the space of coded 
variables. Both spaces are referred to as the solution 
and coding space, respectively [7].   The GAs search 
is terminated when a prescribed number of 
generations have elapsed. The procedure of GAs is 
summarized in Figure 1. 
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Figure 1. GAs search procedure [4], [7], [9], [15]. 
 
3.2. Chromosome representation 
 

GAs encrypt each trial solution into a sequence of 
numbers or strings and denote the sequences as a 
chromosome. In this paper, a simple binary coding 
for real values as proposed by [15] is employed. 
According to the utilized coding scheme, each 
variable xj in solution space is represented by a 
binary string as shown in Figure 2. The combination 
of these strings forms a chromosome in coding 
space. The evaluation of chromosome fitness is done 
in the solution space of xj while the genetic 
operations are performed in the coding space of 
chromosome.   The binary coding for real values will 
be briefly explained here. More details can be found 
in [15]. In context of GAs-aided reliability analysis, 
each variable value is corresponding to a realization 
of a random variable xj. According to the binary 
coding for real values, the length of the binary strings 
depends on the required precision. When the domain 
of variable xj is bounded by lower boundary lbj and 
the upper boundary ubj, and the required precision 
needs ζj places after the decimal point, the range of 
the domain of each variable should be divided into at 
least ( ) j

jj lbub
ς10×−  size ranges. The required bits l j 

for the variable is then obtained from 
 
   ( ) jjj l

jj

l
lbub 2102 1 ≤×−<− ς                               (3) 

 
The encoding, i.e. from a real number to a binary 
string, and the decoding follow the relation 
 

   ( )
12 −

−
×+=

jl

jj
jjj

lbub
substringdecimallbx           (4) 

 
, where decimal (substringj) represents the decimal 
value of substringj for variable xj in the solution 
space. The decimal value is also referred to as the 

decimal number. The obtained decimal number is 
then transformed into the binary number. 
 

 
 

Figure 2. Chromosome representation using binary 
coding for real values [15]. 

 
As an example, the design variables are x1 and x2, 
both of which have the same domain boundaries [-
1,1]. Suppose that the desired precision is three 
decimal places for each variable. Therefore, the 
required number of bits for each variable is 11 and 
the total length of the binary string is thus 22 bits. 
The decoding of a binary-coded chromosome 
according to this example is illustrated in Table 1 
and Figure 3, respectively. ηk is a binary string 
representing the kth chromosome. 
 
Table 1. Binary numbers and their corresponding 
decimal numbers. 
 

Variable Binary Number 
Decimal 
Number 

x1 11110001001 1929 
x2 01001101110 622 

 

 
 

Figure 3. A binary-coded chromosome for real 
values. 

 
3.3. Reproduction process 
 

Reproduction in GAs is a process in which individual 
chromosomes are copied according to their fitness 
values. Copying chromosomes according to their 
fitness values implies that a chromosome with higher 
fitness value has a higher probability of contributing 
one or more offspring in the next generation. This 
operation imitates the survival of the fittest or the 
natural selection as used by Darwin in [3]. Fitness in 
natural population is determined by the ability of a 
creature to survive predators, pestilence, and the 
other obstacles to adulthood and subsequent 
reproduction. Fitness in an optimization by GAs is 
defined by a fitness function. Based on the 
optimization problem as described by Eq. (1) and the 
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set of constraints (2), the fitness function F(x) of a 
chromosome representing a vector x of variables in 
the solution space is defined as 
 

   ( )
( )

( ) ( )







−= ∑
=

infeasible is  ;

feasible is  ;

1
1

1

xxx

xx
NC

j
jj vkO

O
xF              (5)   

 
An adaptive penalty scheme which is introduced by 
[1] and improved by [17] will be employed to handle 
the constraints. The improved adaptive penalty 
scheme shows its excellent capability in handling a 
very large number of constraints [10]. This adaptive 
scheme is given by 
 

   ( )( ) ( )

( )[ ]∑
=

><

><
=

NC

l
l

j
j

v

v
Omaxk

1

2

inf
1

x

x
x                          (6) 

 
, where max(O1

inf(x)) is the maximum of the 
objective function values in the current  population in 
the infeasible region, vj(x)  is the violation magnitude 
of the jth constraint. <vj(x)> is the average of vj(x) 
over the current population. kj is the penalty 
parameter for the jth constraint defined at each 
generation. The violation magnitude is defined as 
 

   ( ) ( ) ( )


 >

=
otherwise ;0

0 ; xx
x ll

l

gg
v                                (7) 

 
The reproduction operator may be implemented in a 
number of ways. The easiest and well-known 
approach is the roulette-wheel selection (see e.g.[4], 
[9]). According to the roulette-wheel scheme, the jth 
chromosome will be reproduced with the probability 
of  
 

   

∑
=

=
NPop

l
l

k
k

F

F
P

1

                                                        (8) 

 
, in which NPop is the population or sample size. The 
fitness value Fk is obtained from Eq. (5). On passing, 
it should be noted that GAs utilize only the 
numerical values of the objective function and of its 
associated constraints for the evaluation of the 
chromosome fitness (confer Eqs. (5) to (7)). This 
advantageous feature makes GAs readily applicable 
to real-world problems where the LSFs are generally 
implicit with respect to random variables. 

3.4 Genetic operators 
 

Cross-over and mutation are genetic operators.   
Crossover operates on two chromosomes at a time 
and results in two new chromosomes. A simple 
binary crossover with two cut point is illustrated in 
Figure 4.   
 

Parent Chromosomes New Chromosomes

Cut Points

1 111111111

0 00000000 0

1 1111

11 1

11

0 000

000

00 0

CROSSOVER

 

Figure 4. Crossover of two chromosomes. 
 
Mutation operates on a chromosome by mutate a 
gene in a chromosome to produce new chromosome. 
A binary mutation converts the randomly selected 
genes from 0 to 1 or from 1 to 0 (see Figure 5). 
 

 
 

Figure 5. Mutation on a chromosome. 
  
4. Multimodal GAs 
 
4.1. General 
 

Simple GAs perform well in locating a single 
optimum but face difficulties when requiring 
multiple optima [5], [13], [14], [16], [18]. Even there 
exist multiple optima in the search space, the simple 
GAs will converge to a single optimal point. This is 
the result of genetic drift, which is the tendency of 
the GAs to converge over time to one optimal point 
within the search space [16]. The term genetic drift 
explains the effect of a loss of population diversity 
that occurs due to the stochastic nature of selection in 
a finite population [12]. As to avoid the solution 
population to converge to a single optimal point, 
mechanisms of diversification have been proposed to 
force GAs to maintain a diverse population [5], [13], 
[14]. Niching methods extend the simple GAs to 
maintain the population diversity and provide the 
stability of subpopulations in the vicinity of optimal 
solutions in a multimodal domain [5], [13], [14]. 
Niching method thus can identify the multiple 
solutions with certain extent of diversity [16]. 
Among niching methods, Standard Crowding 
Genetic Algorithms (SCGAs) [5] and Deterministic 
Crowding Genetic Algorithms (DCGAs) [13], [14] 
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have been commonly used in multimodal functions 
optimization. These two methods will be used as 
tools for locating multiple design points herein. It 
should be noted that both SCGAs and DCGAs, 
however, are originally designed for unconstrained 
optimization problems. To handle the constraint (2), 
the adaptive penalty described in the previous section 
will be used in both SCGAs and DCGAs. 
 
4.2. Standard crowding genetic algorithms 
(SCGAs) 
 

SCGAs was proposed by De Jong [5]. The intention 
of the methodology is to preserve diversity and slow 
down convergence on multimodal functions, 
specifically Shekels Foxholes multimodal function. 
Premature convergence is reduced in SCGAs by 
minimizing changes in the overall population 
distribution between generations [16].   According to 
SCGAs, the procedure revises the population by 
replacing similar parent. The replacement for each 
offspring produced is considered individually. For 
each such individual, a sample of crowding factor 
(CF) individuals are randomly drawn from the parent 
population and searched for the most similar bit-
string to the offspring in question. Similarity is 
measured as the number of point differences between 
the equal length bit-strings, called the Hamming 
distance. The most similar individual from the small 
sample, i.e. from CF, is then directly replaced in the 
population by the offspring, without regard for 
fitness [2].   The following provides the pseudo code 
of SCGAS [2]. 
 
G : Generational gap; ratio of the 

reproduced population in each 
generation. 

NPop : Population size. 
CF : Crowding Factor; the size of sample 

taken from population and searched for 
the most similar. 

 
1. Randomly initialize population. 
2. Evaluate fitness of the population. 
3. Loop until stop condition: 

a.Select population set of size G× NPop by 
fitness proportion. 

b. Crossover to generate G× NPop offspring. 
c.Evaluate fitness of offspring. 
d. Loop for each offspring: 

i. Randomly select sample size of CF 
from the parent population. 

ii. Search for most similar in sample in 
comparison with the offspring. 

iii.  Replace most similar in population 
with offspring irrespective of fitness. 

4.2. Deterministic crowding niche genetic 
algorithms (DCGAS) 
 

Mahfoud [13], [14] proposed a simple multimodal 
GAs and is known as Deterministic Crowding Niche 
Genetic Algorithms (DCGAS). DCGAS work as 
follows. First all population elements are grouped 
into N/2 pairs, where N is number of population. The 
crossover and mutation are the applied to all pairs. 
Each offspring competes against one of the parents 
that produced it. For each pair of offspring, two sets 
of parent-child tournaments are possible. DCGAS 
hold the set of tournaments that forces the most 
similar elements to compete. Like in sharing, 
similarity can be measured using either genotype or 
phenotype distance.   The DCGAS is indeed a special 
case of SCGAS where the crowding factor, CF, 
equals to 2. They were developed to improve De 
Jong’s basic crowding scheme.   The following 
provides a pseudo code of DCGAS [2]. 
 
NPop : Population size. 
d(x, y) : Distance between individuals x and y. 
F(x) : Fitness of individual population 

member. 
 

1. Randomly initialize population. 
2. Evaluate fitness of population. 
3. Loop until stop condition: 

a. Shuffle the population. 
b. Crossover to produce NPop/2 pairs of 

offspring. 
c. Apply mutation (optional). 
d. Loop for each pair of offspring: 

i. If 
(d(parent1,child1)+d(parent2,child2))   
≤ 
(d(parent2,child1)+d(parent1,child2)). 

1. If F(child1)  >  F(parent1), 
child1 replaces parent1. 

2. If F(child2)  >  F(parent2), 
child2 replaces parent2. 

ii. Else 
1. If F(child1)  >  F(parent2), 

child1 replaces parent2. 
2. If F(child2)  >  F(parent1), 

child2 replaces parent1. 
 

Instead of using De Jong’s crowding factor, DCGAS 
method compares the new offspring directly to their 
parents. The parents are replaced only if the children 
have higher fitness [2]. 
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5. Applications of algorithms to reliability 
analysis 
 
5.1. Determination of PML 
 
5.1.1. Problem formulation 
 

Since PML is the point of highest probability density 
function in the failure domain, the PML x* can be 
obtained from solving the following optimization 
problem: 
     
   Maximize   ( ) ( )xx XfO =3

 

 
   Subject to    ( ) 01 ≤xg  
                            … 
                       ( ) 0≤xjg  

                            … 
                       ( ) 0≤xNCg  

(9) 
 

(10.1) 
 

(10.j) 
 
 

(10.NC) 
 
in which fX(x) is the Joint Probability Density 
Function (JPDF) of X = [X1 … XN]T  and gj(x) (j = 1, 
…, NC)  is the jth LSF. N and NC are the total 
number of basic random variables and the total 
number of limit state functions, respectively. The 
corresponding fitness function is 
       

 ( )
( )

( ) ( )







−= ∑
=

infeasible is  ;

feasible is  ;

1
3

3

xxx

xx
NC

j
jj vkO

O
xF  

 
(11) 

 
, where kj and vj(x) are defined as in Eqs. (6) and (7), 
respectively. 
 
5.1.2. Numerical example 1: a plate with an 
edge crack [19] 
 

Consider a plate with an edge crack. When the 
cracked plate is loaded in combined tensile and 
bending, the total stress intensity factor totalI−K  is 

given by: 
 
 bending-Itension-Itotal-I KKK +=  

           ( ) ( )[ ] At/AFSt/AFS πbendingbtensiont +=  

 
(12) 

 
where 

tensionI−K  is the tensile stress intensity factor 

and 
bending-IK  is the bending stress intensity factor. St 

is the tensile stress, Sb is the outer-fiber bending 
stress, A is the crack depth and t is the plate 
thickness. A, St, and Sb are statistically independent 
random variables. The crack depth A is modelled by 
the exponential random variable whose PDF is 
 

 ( ) 







−=

AA
A

a
expaf

µµ
1             

 
(13) 

 
, where the mean crack depth µA is 6 mm. The 
thickness of the plate is constant and deterministic. 
The thickness in this example is set equal to 100 mm. 
The tensile stress St and the bending stress Sb are 
modelled by normal random variables. Accordingly, 
the PDF of St is 
    

 ( ) ( )









 −
−=

2
t

2
tt

t

tt 22

1

S

S

S

S

s
expsf

σ
µ

σπ
            

 
(14) 

 
where µSt and σSt is the mean and standard deviation 
of St, respectively. Similarly, the PDF of Sb is 
 

 ( ) ( )









 −
−=

2
b

2
bb

b

bb 22

1

S

S

S

S

s
expsf

σ
µ

σπ
            

 
(15) 

 
in which µSb and σSb is the mean and standard 
deviation of Sb, respectively. The mean tensile stress 
µSt is 20 MPa and the associated Coefficient of 
Variation (COV) is 0.10. The mean bending stress 
µSb is 10 MPa and the corresponding COV is 0.20. 
The fracture toughness KIc is modelled by three-
parameter Weibull random variable with the 
Cumulative Distribution Function (CDF) [20]. 
    

 ( )























−
−

−−=
b

K kk

kk
expkF

mino

minIc
IcIc 1  

 
(16) 

 
, where ( )IcIc kFK  is the cumulative distribution 

function of fracture toughness, kmin is the location 
parameter, ko is the scale parameter, and b is the 
shape parameter. Mean toughness in terms of the 
Weibull distribution parameters is 
 

  ( ) 






 +−+=
b

kkk
1

1minominKIc Γµ  
 

(17) 

 
in which Γ(.) is the gamma function. Standard 
deviation is then equal to 
 

  
2

minIc
Ic

1
1

2
1

1
1
















 +−






 +







 +

−
=

bb

b

kK
K ΓΓ

Γ

µσ  
 

(18) 

 
The mean toughness µKIc is 200 mMPa . b = 4 and 

kmin = 20 mMPa . The corresponding PDF of KIc is 
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
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−
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


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



−
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(19) 

 
All random variables including the associated mean 
and COV values are summarized in Table 2. The 
original JPDF is thus 
 

  ( ) ( ) ( ) ( ) ( )IcIcbbtt11 kfsfsfaff KSSA=xX  (20) 

 
, where [ ]TKSSA Icbt1 =X  is the vector of all 

random variables. 
 
Table 2. Description of random variables in Example 
1. 
 

Random 
Variable 

Distribution 
Type 

Mean COV 

A Exponential 6.00x10-3 m 1 
St Normal 20 MPa 0.10 
Sb Normal 10 MPa 0.20 
KIc 3-parameter 

Weibull 
200 mMPa  Eqs. (18) 

and (19) 
  
Tada [21] gives several formulas for F(A/t). The 
following formulas are used in this example and they 
are applicable for any A/t. 
 

( )
( )








×

























−++
=

t

A

A

t

t

A

t

A
tA

tAF

2
tan

2

2
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2
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3
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π
π

π
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A

t

t
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2

2
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2
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/

4

bending
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(21.2) 

 
The LSF is defined as 
 
   ( ) totalIIcIctotalI , −− −= KKKKg  (22.1) 

 
or ( ) ( )bttotalIIcIcbt ,,,,, SSAKKKSSAg −−=  (22.2) 

 
in which KIc is the fracture toughness. 
GAs have been applied to determine PML first. The 
objective function according to Eq. (9), is 
 

  ( ) ( ) ( ) ( ) ( )IcIcbbttIcbt ,,, kfsfsfafkssaO KSSA=  (23) 

 
The magnitude of the constraint violation, according 
to Eqs. (7) and (22), is 

 

( ) ( ) ( )


 >−

= −

otherwise ;0

0,,, ;,,
,,, IcbtbttotalIIc

Icbt

kssagssakk
kssav

(24) 
 
It is noted from Eq. (12) that KI-total is the function of 
A, St, and Sb. The fitness function is thus 
 

( ) ( ) ( )
( ) ( ) ( )




>−
≤

=
0,,,;,,,,,,

0,,,;,,,
,,,

IcbtIcbtIcbt

IcbtIcbt
Icbt kssagkssakvkssaO

kssagkssaO
kssaF

(25) 
 
Table 3: PML in Example 1. 
 

PML Magnitude at PML 
a* 84.4x10-3 m 
st

* 20.0 MPa  
sb

* 10.0 MPa 
kIc

* 205 
mMPa  

 
GAs search employs the population size of 100. The 
number of generations used in the search is 100. A 
two-point crossover is utilized with the crossover 
rate of 0.8. The mutation rate is taken as 0.002. 
Figure 6 shows the history of the average fitness of 
the feasible chromosomes. The resulting PML is 
shown in Table 3.Although the LSFs in the example 
is explicit, the numeric -based feature of GAs 
naturally enable the algorithms applicable to the case 
of implicit LSFs.    
With respect to this feature, the approximation of 
implicit LSFs is not necessary. The error from such 
an approximation is thus not encountered.Based on 
the introduced concept and implementation, GAs is 
readily applicable to higher dimensional problems. 
Due to the algorithmic simplicity, the 
implementation of GAs does not require any 
additional effort. 

 

 
 

Figure 6. The history of the average fitness of the 
feasible chromosomes. 
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5.2. GAs-aided importance sampling 
 
5.2.1. Principles 
 

The probability pF of a failure event F is obtained 
from 
 
  ( ) xxX dfp

FD

F ∫=  (26) 

 
, where DF is the subspace corresponding to the 
failure event F in a multidimensional space of X1,…, 
XN and will be referred to as the event or failure 
domain. fX(x) is the JPDF of X1,…, XN.   Using the 
importance sampling technique, Eq. (26) is modified 
to 
 

  ( ) ( )
( ) ( ) yy
y

y
y X

X

X dh
h

f
IpF ∫=  (27.1) 

 

,or  ( ) ( )
( ) ( ) yy
y

y
y X

X

X dh
h

f
IpF ∫=  (27.2) 

 
Note that the subscript h signifies that the 
expectation E is taken with respect to an importance 
sampling PDF or Importance Sampling Function 
(ISF) hX(x). The failure probability is estimated as 
 

  ( ) ( )
( )jX

jX
j Y

Y
Y

h

f
I

Nsim
P

Nsim

j
F ∑

=

=
1

1  (28) 

 
in which Yj is the j-th sample from the ISF hX(x) and 
Nsim is the sample size. 
The PML obtained from GAs search can enhance the 
efficiency of Monte Carlo Simulation (MCS). The 
efficiency enhancement is accomplished by 
employing the GAs-searched PML as the sampling 
center of the ISF hX(x). This sampling scheme is 
denoted as an Importance Sampling around PML 
(ISPML). For the purpose of procedure clarity, the 
original JPDF fX(x) will be rewritten as fX(x|µµµµ=µµµµo) in 
which µµµµ denotes the mean vector. µµµµo is the original 
mean vector. According to the ISPML, the ISF hX(x) 
takes the form 
 
  ( ) ( )*|fh xµxx XX ==  (29) 

 
, where x* is PML. That is the ISF has the same 
functional form as the original JPDF. The mean 
vector of the ISF, however, is different from that of 
the original JPDF and takes the PML as the mean 
vector. Consequently, the estimate of the failure 
probability is 
 

  ( ) ( )
( )*

Nsim

j
F

|f

|f
I

Nsim
P

xµY

µµY
Y

jX

jX
j =

=
= ∑

=

o

1

1  (30) 

 
5.2.2. Numerical example 2: a plate with an 
edge crack [19] 
 

Based on the GAs-searched PML, the ISF takes the 
form defined by Eq. (29) with the mean equal to 
PML, i.e. 
 
  [ ]Tkssa ∗∗∗∗= Icbtµ  (31) 

 
The ISF as defined by Eq. (29) is used for computing 
the failure probability according to the LSF (22). The 
results are compared with MCS and shown in 
Figures 7, 8, and Figure 9. The estimate of the 
failure probability in each MCS and ISPML 
methodology is based on 10 independent runs. The 
sample sizes shown in all figures are the values used 
in each respective run. 
    

 
 

Figure 7. Estimates of failure probability from MCS 
and ISPML. 
 
Figure 7 shows that the estimated failure probability 
is at the order of 106. The theoretical sample sizes 
required by MCS for the estimation are at least 106. 
The same figure also shows the sample sizes used by 
ISPML in order to compute the failure probability.  It 
is obvious that the sample sizes used by ISPML are 
much smaller than the theoretically required sample 
sizes for MCS. Figure 8 shows the variation of COV 
with respect to different sample sizes in both MCS 
and ISPML cases. The rate of COV reduction with 
respect to sample size in case of ISPML is 
significantly higher that that in case of MCS. 
 

 
 

Figure 8.   Effect of sample size on estimate COV. 
 



SSARS 2009   
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland 

 

 153

 
 

Figure 9. Sample sizes used by MCS and ISPML, 
with respect to the estimate COVs. 
 
The same information in Figure 8 is rearranged and 
plotted in Figure 9. Symbols � and � in Figure 9 
indicate that MCS employs the sample sizes 
approximately 1,000 times larger than ISPML uses in 
order to attain the same confidence level of estimate 
or estimate COV. ISPML is thus more efficient than 
MCS with respect to the quality of the estimate and 
the computational resource consumption. In this 
respect, GAs significantly contributes to the 
reduction in computational complexity. GAs also 
realizes the estimation of failure probability in the 
situation where the size of sampling is limited by the 
availability of computational resources. According to 
the numerical results, the computation of failure 
probability can demand considerable computation 
resource although the system dimension is large. 
In summary, GAs can be used as tool for enhancing 
the efficiency in risk analysis by providing such 
crucial information as the PML which is then 
employed in the analysis procedure. 
 
5.3. Determination of multiple design points 
 
5.3.1. Problem characteristics 
 

Design point is the point on the limit state surface 
that is nearest to the origin in a standard normal 
space. In optimization context, the design point is the 
global minimum obtained from solving a constrained 
optimization problem. However, it is possible that 
there are other local minima whose distances to the 
origin are of similar magnitudes to the global 
minimum. The global minimum and local minima 
with similar magnitudes lead to the situation of 
multiple design points. When multiple design points 
exist, the reliability analysis based only on any single 
design point among the multiple design points may 
result in an underestimation of failure probability. 
Determination of global optimum as well as local 
optima belongs to a multimodal function 
optimization. The following section intends to 
demonstrate the application SCGAs and DCGAs to 
the determination of multiple design points. Since 
SCGAs and DCGAs are originally designed for 
unconstrained optimization problems, it is necessary 

to provide means of handling constraints. The 
adaptive penalty technique as proposed in [17] and 
described in Section 3.3 will be combined with 
SCGAs and DCGAs for handling constraints. 
 
5.3.2. Problem formulation 
 

From the definition of the design point, the design 
point U* is obtained from solving the following 
constrained optimization problem: 

    
   Minimize

                       ( ) UU =O  

 
   Subject to constraints    ( ) 0=Ug  

(32) 
 

(33) 

 
in which  U = [U1 … UN]T denotes the vector of 
standard normal variables. g(U) is the LSF. N is the 
total number of basic random variables. g(U) = 0 is 

the limit state surface and g(U) ≤ 0 indicates the 
failure state corresponding to the LSF. For the 
constrained optimization above, there may exist 
several optima whose objective function values are 
of similar magnitudes to the global maximum. 
Erroneous results occur if the optima from which the 
neighborhoods have significant contributions to the 
reliability assessment have not been located and so 
have been neglected. It is, therefore, necessary to 
locate global optimum as well as local optima. This 
can be achieved by solving a constrained multimodal 
optimization problem of the form (32) and (33). 
 
5.3.3. Numerical example 3: a highly non-
linear limit state function 
 

This example considers the following complicate 
LSF as introduced in [17]. 

 

  ( ) ( ) 2121 56 UUcosU,Ug −−=  (34) 
 

where U1 and U2 are independent standard normal 
variables. Although the problem is of low dimension, 
the purpose of this problem is to illustrate the 
capability of multimodal GAs in determining 
multiple design points under situation of highly 
nonlinear LSF. Figure 10 displays the plot of the 
limit state surface in 2-dimensional space. The plot 
of the limit state surface shows that all local optima 
are at the base or bottom of the wavy limit state 
surface. 
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Figure 10. The limit state surface as in Eq. (34). 
 
The equality constraint (34) is modified to an 
equality constraint for the purpose of its handling.   
The resulting equality constraint is 

 

  ( ) ( ) δ−−−= 21213 56 UUcosU,Ug  (35) 

 

,where δ is the tolerance of being null. The value of δ 
is set to a small value to ensure that the obtained 
solution is closed to the limit state surface as much as 
possible. 
Since GAs are originally designed for maximization 
problems, the fitness function according to the 
expressions (32) and (33) is defined as 
 

  ( ) ( )21
21 ,

1
,

UUH
UUF =  (36) 

   

( ) ( ) ( )
( ) ( ) ( )




>+
≤

=
0,;,,

0,;,
,

2132121

21321
21 UUgUUkvUUO

UUgUUO
UUH  

(37) 
 

  ( ) 2
2

2
121, UUUUO +=  (38) 

 
The magnitude of the constraint violation, according 
to Eqs. (7) and (35), is 
 

  ( ) ( ) ( )


 >

=
otherwise ;0

0 ; 213213
21

U,UgU,Ug
U,Uν  

 
(39) 

 
Both SCGAs and DCGAs are employed to search for 
design points in the domain of [-4,4]×[0,7]. The 
search results from each respective algorithm are 
separately shown in the following subsections. It 
should be noted in Eq. (37) that the penalty term is 
added to the objective function (38), instead of 
subtracting it, because the problem is a minimization 
problem. 
 

5.3.3.1. SCGAs 
 

The parameters for the SCGAs are given in Table 4. 

The evolutions of the search using SCGAs approach 
are shown in Figure 11. The evolution also shows 
the so-called genetic drift effect. 
 

  
a) 1st generation b) 10th generation 

     
c) 20th generation d) 50th generation 

  
e) 80th generation 

 

f) 100th generation 

Figure 11.Chromosomes distribution at various 
generations by SCGAs in Example 3. 
 
The genetic drift normally happens with the niche 
methods such as SCGAs and DCGAs.The genetic 
drift leads to the possible lost of the already captured 
optima. The optima found by SCGAs are also shown 

in Table 5. δ  in Eq. (35) is equal to 0.01. 
 
Table 4. SCGAs parameters for Example 3. 

 

Parameters Value 
NPop 500 

Pc 1.00 
G 0.1 

CF 0.2 
Number of Generations 100 

  

5.3.3.2. DCGAs 
 

The parameters for the DCGAs are given in Table 6.   
The search results by DCGAs at different 
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generations are shown in Figure 12. δ in Eq. (35) is 
equal to 0.01. The optima are summarized in Table 5. 
The GAs results explicate that both SCGAs and 
DCGAs have noticeable capabilities in 
simultaneously locating several design points under 
the LSFs with high non-linearity and irregular 
geometry. Regarding to two utilized multimodal 
GAs, it is possible that the found design points in 
early generations can be lost due to the inherent 
genetic drift. When considering from the plots of 
population distributions at different generations, 
DCGAs are more stable in maintaining the found 
results than SCGAs. The numerical results also 
suggest that DCGAs provide better quality of 
solutions than SCGAs.   It should be noted that the 
multimodal GAs work in a different manner from the 
sequential search methods, such as the gradient-
based methods, where the decision on the numbers of 
the desired design points must be made by the user. 
It is possible that some significantly contributing 
design points may be ignored if the search is stopped 
before total numbers of the influential design points 
are obtained. In that case, the failure probability is 
certainly underestimated. The multimodal GAs, 
therefore, naturally circumvents such a difficulty. 
 
Table 5:  Comparison of exact multiple design points 
with the design points from SCGAs and DCGAs. 

 

X1 X2 Optima 
Exact SCGAs DCGAs Exact SCGAs DCGAs 

1 -3.75 -3.71 -3.74 5.00 5.19 5.01 
2 -2.50 -2.65 -2.51 5.00 5.54 5.00 
3 -1.25 -1.21 -1.26 5.00 5.10 5.00 
4 0.00 -0.07 0.01 5.00 5.09 5.00 
5 1.25 1.18 1.25 5.00 5.09 5.00 
6 2.50 2.58 2.50 5.00 5.10 5.00 
7 3.75 3.75 3.75 5.00 5.05 5.03 

 
Table 6. DCGAs parameters for Example 3. 
 

Parameters Value 
Npop 500 

Pc 1.00 
Number of Generations 100 

 

  

a) 1st generation b) 10th generation 

  
c) 20th generation d) 50th generation 

  
e) 80th generation 

 

f) 100th generation 

Figure 12. Chromosomes distribution at various 
generations by DCGAs in Example 3. 

 
6. Conclusion 
 

Application of Genetic Algorithms (GAs) to 
reliability analysis is described, discussed, and 
summarized in this paper. Simple GAs and 
Multimodal GAs are addressed. GAs are applied to 
solve key problems in reliability analysis. The 
problems include the determination of the Point of 
Maximum Likelihood in failure domain (PML), the 
computation of failure probability using the so-called 
Importance Sampling around PML (ISPML), and the 
determination of multiple design points. GAs-aided 
reliability analysis requires no approximation of 
Limit State Functions (LSFs) although the LSFs are 
implicit, non-linear, non-differentiable, and noisy. 
Consequently, the computational modeling errors of 
LSFs are circumvented. The numeric-based feature 
of GAs also makes the requirement on the 
knowledge and visualizability of the geometry or 
landscape of limit state surfaces become 
unnecessary. The capability in the reliability analysis 
of complex systems, where their knowledge is not 
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always given and their visualizability are generally 
not possible, is thus enhanced. From the viewpoint of 
computational performance, the computational 
efficiency with respect to the sample size is 
significantly improved via the utilization of GAs-
searched PML in ISPML and the substantial 
reduction in sample size. The reliability analysis of 
rare events can be realized even if the computational 
resources are limitedly provided. In case of multiple 
design points, the population-based nature of GAs 
can be advantageously employed to automatically 
detect those crucial information points 
simultaneously. Unlike sequential search algorithms, 
the information about the number of design points is 
not necessary. The multimodal GAs, therefore, 
reduces the possibility of missing influential design 
points. Finally, the algorithmic simplicity of GAs in 
implantation is considered a highly attractive feature 
from the viewpoint of software engineering and 
practical application. 
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