
SSARS 2009
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland

 145

1. Introduction

Genetic Algorithms (GAs) are global search
techniques that are based on evolutionary theory in
biological sciences (see e.g. [4], [7], [9], [11],[15]).
GAs have been employed in several engineering
disciplines to obtain optimal solutions or optimal
designs [7]. The application of GAs in context of
reliability engineering is directed towards reliability-
based optimization problems [7]. A most recent
state-of-the-art survey [8] also shows only the
application of GAs to reliability-based design
optimization. While the design optimization is
considered a conventional application for GAs, there
is another potential application. The prospective
application is relevant to reliability analysis. The
application of GAs to reliability analysis appears to
gain less interest and attention compared to the
application to reliability-based design optimization.
The purpose of this paper is to describe, discuss, and
summarize the application of GAs to reliability
analysis.
The procedure combines GAs with reliability
analysis procedure, thus forming a hybrid procedure.

The analysis which is based on the hybrid procedure
will be hereinafter referred to as a Genetic
Algorithms-aided (GAs-aided) reliability analysis.
The application of GAs to reliability analysis is
aimed at obtaining crucial information needed from
the analysis. The crucial information includes Point
of Maximum Likelihood in failure domain (PML)
and failure probability for a given system or element.
Another important application of GAs in context of
reliability analysis is the determination of multiple
design points in multiple failure modes.
The structure of the paper starts with the generic
form of the optimization problems in reliability
analysis. The next main sections contain the
theoretical background of GAs which presents the
description of both simple GAs and multimodal GAs,
respectively. The application of GAs to each
respective problem is then demonstrated via
numerical examples in order to clarify the
procedures. The simple GAs are used in the
determination of PML. The GAs-determined PML is
further employed in an MCS-based method which is
specifically referred to as an Importance Sampling
around PML (ISPML). The multimodal GAs are

Harnpornchai Napat
College of Arts, Media, and Technology, Chiang Mai University, Chiang Mai, Thailand

Genetic algorithms-aided reliability analysis

Keywords

genetic algorithms, reliability analysis, simulation methods, complex systems, multiple failure modes

Abstract

A hybrid procedure of Genetic Algorithms (GAs) and reliability analysis is described, discussed, and
summarized. The procedure is specifically referred to as a Genetic Algorithms-aided (GAs-aided) reliability
analysis. Two classes of GAs, namely simple GAs and multimodal GAs, are introduced to solve a number of
important problems in reliability analysis. The problems cover the determination of Point of Maximum
Likelihood in failure domain (PML), the computation of failure probability using the GAs-determined PML,
and the determination of multiple design points. The MCS-based method using the GAs-determined PML is
specifically implemented in the so-called an Importance Sampling around PML (ISPML). The application of
GAs to each respective problem is then demonstrated via numerical examples in order to clarify the procedures.
With an aid from GAs, reliability analysis is possible even if there is no information about the geometry or
landscape of limit state surfaces and the total number of crucial likelihood points. In addition, GAs
significantly improve the computational efficiency and realize the analysis of rare events under constrained
computational resources. The implementation of GAs to reliability analysis for building up the hybrid
procedure is readily because of their algorithmic simplicity.

Harnpornchai Napat
Genetic Algorithms-aided Reliability Analysis

 146

employed in the determination of multiple design
points. The crucial aspects of the paper will then be
summarized at the end.

2. Generic form of optimization problems in
reliability analysis

Optimization problems that appear in context of relia
bility analysis include constrained and unconstrained
optimization problems. Optimization problems gene
rally aim at maximization or minimization of objecti
ve functions. The constrained optimization problem
for maximizing an objective function is expressed as

 Maximize ()x1O (1)

 Subject to () 01 ≤xg (2.1)

 …

 () 0≤xjg (2. j)

 …

 () 0≤xNCg (2.NC)

, where ()x1O is the objective function of

[]T
Nk xxx KK1=x . xk is the kth design

variable. N is total number of design variables.
()xjg is the jth constraint. NC is total number of

constraints. The constrained maximization problem
is found in the determination of PML and multiple
design points.

3. Simple GAs

3.1. General on GAs

GAs are a stochastic search technique based on the
mechanism of natural selection. It combines
Darwin’s principle of survival of the fittest and a
structured information exchange using randomized
operators to evolve an efficient search mechanism
[9]. GAs have been utilized to successfully solve
various optimization problems in which the optimal
solutions are searched and determined by GAs [see
e.g. [7], [4]. Major virtues of GAs are as follows,
among others [9], [15], [7]. First, GAs are a
population-based search and use probabilistic
transition rules to direct the evolution of the search.
In other words, GAs make a remarkable balance
between the exploitation of the best solution and the
exploration of the search space. The population-to-
population approach and the probabilistic transition
rules attempt to make the search escape from local
optima. Correspondingly, the possibility of being
trapped in local optima when searching for the
design point can be reduced using GAs. Second, GAs

use only the information of objective function, not
the function derivatives or other auxiliary
knowledge. The required information is the
numerical value of the objective function. Third,
GAs do not impose much mathematical requirement
about the optimization problems. Yet, the algorithms
are simple and readily to be implemented.
Accordingly, GAs are robust and thus applicable
whenever the numerical value of the objective
function can be determined. The second and third
virtues make GAs attractive to reliability analysis of
complex systems where the associated Limit State
Functions (LSFs) can be implicit, nonlinear, non-
differentiable, and noisy. Those types of LSFs are
thus characterized by numerical values only.
GAs procedure starts with an initial set of randomly
selected trial solutions, namely population. Each
individual in the population is encrypted and referred
to as a chromosome which represents a possible
solution to the optimization problem. The
chromosomes evolve through successive iterations,
called generations. In each generation, the fitness of
each chromosome is evaluated. The fitness of each
chromosome reflects the potential to be the optimal
solution. Each chromosome is reproduced according
to its fitness value. Fitter chromosomes have higher
probabilities to be selected for reproduction whereas
weaker chromosomes tend to die off. The
chromosome selection and reproduction are carried
out in a reproduction process. The chromosomes
resulting from the reproduction process form a
mating pool and are collectively referred to as
offspring. The offspring are later undergone genetic
operations. The exploration of search space is carried
out through the genetic operations where genetic
operators are applied to existing chromosomes and
transform them into new chromosomes. The genetic
operators-derived chromosomes represent new trial
solutions in the search space. The resulting
chromosomes then form the new generation of
population. It should be noted that GAs work in two
spaces alternatively. The selection process is
performed in the space of original variables while the
genetic operations are done in the space of coded
variables. Both spaces are referred to as the solution
and coding space, respectively [7]. The GAs search
is terminated when a prescribed number of
generations have elapsed. The procedure of GAs is
summarized in Figure 1.

SSARS 2009
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland

 147

Figure 1. GAs search procedure [4], [7], [9], [15].

3.2. Chromosome representation

GAs encrypt each trial solution into a sequence of
numbers or strings and denote the sequences as a
chromosome. In this paper, a simple binary coding
for real values as proposed by [15] is employed.
According to the utilized coding scheme, each
variable xj in solution space is represented by a
binary string as shown in Figure 2. The combination
of these strings forms a chromosome in coding
space. The evaluation of chromosome fitness is done
in the solution space of xj while the genetic
operations are performed in the coding space of
chromosome. The binary coding for real values will
be briefly explained here. More details can be found
in [15]. In context of GAs-aided reliability analysis,
each variable value is corresponding to a realization
of a random variable xj. According to the binary
coding for real values, the length of the binary strings
depends on the required precision. When the domain
of variable xj is bounded by lower boundary lbj and
the upper boundary ubj, and the required precision
needs ζj places after the decimal point, the range of
the domain of each variable should be divided into at
least () j

jj lbub
ς10×− size ranges. The required bits l j

for the variable is then obtained from

 () jjj l

jj

l
lbub 2102 1 ≤×−<− ς (3)

The encoding, i.e. from a real number to a binary
string, and the decoding follow the relation

 ()
12 −

−
×+=

jl

jj
jjj

lbub
substringdecimallbx (4)

, where decimal (substringj) represents the decimal
value of substringj for variable xj in the solution
space. The decimal value is also referred to as the

decimal number. The obtained decimal number is
then transformed into the binary number.

Figure 2. Chromosome representation using binary
coding for real values [15].

As an example, the design variables are x1 and x2,
both of which have the same domain boundaries [-
1,1]. Suppose that the desired precision is three
decimal places for each variable. Therefore, the
required number of bits for each variable is 11 and
the total length of the binary string is thus 22 bits.
The decoding of a binary-coded chromosome
according to this example is illustrated in Table 1
and Figure 3, respectively. ηk is a binary string
representing the kth chromosome.

Table 1. Binary numbers and their corresponding
decimal numbers.

Variable Binary Number
Decimal
Number

x1 11110001001 1929
x2 01001101110 622

Figure 3. A binary-coded chromosome for real
values.

3.3. Reproduction process

Reproduction in GAs is a process in which individual
chromosomes are copied according to their fitness
values. Copying chromosomes according to their
fitness values implies that a chromosome with higher
fitness value has a higher probability of contributing
one or more offspring in the next generation. This
operation imitates the survival of the fittest or the
natural selection as used by Darwin in [3]. Fitness in
natural population is determined by the ability of a
creature to survive predators, pestilence, and the
other obstacles to adulthood and subsequent
reproduction. Fitness in an optimization by GAs is
defined by a fitness function. Based on the
optimization problem as described by Eq. (1) and the

Harnpornchai Napat
Genetic Algorithms-aided Reliability Analysis

 148

set of constraints (2), the fitness function F(x) of a
chromosome representing a vector x of variables in
the solution space is defined as

 ()
()

() ()







−= ∑
=

infeasible is ;

feasible is ;

1
1

1

xxx

xx
NC

j
jj vkO

O
xF (5)

An adaptive penalty scheme which is introduced by
[1] and improved by [17] will be employed to handle
the constraints. The improved adaptive penalty
scheme shows its excellent capability in handling a
very large number of constraints [10]. This adaptive
scheme is given by

 ()() ()

()[]∑
=

><

><
=

NC

l
l

j
j

v

v
Omaxk

1

2

inf
1

x

x
x (6)

, where max(O1

inf(x)) is the maximum of the
objective function values in the current population in
the infeasible region, vj(x) is the violation magnitude
of the jth constraint. <vj(x)> is the average of vj(x)
over the current population. kj is the penalty
parameter for the jth constraint defined at each
generation. The violation magnitude is defined as

 () () ()


 >

=
otherwise ;0

0 ; xx
x ll

l

gg
v (7)

The reproduction operator may be implemented in a
number of ways. The easiest and well-known
approach is the roulette-wheel selection (see e.g.[4],
[9]). According to the roulette-wheel scheme, the jth
chromosome will be reproduced with the probability
of

∑
=

=
NPop

l
l

k
k

F

F
P

1

 (8)

, in which NPop is the population or sample size. The
fitness value Fk is obtained from Eq. (5). On passing,
it should be noted that GAs utilize only the
numerical values of the objective function and of its
associated constraints for the evaluation of the
chromosome fitness (confer Eqs. (5) to (7)). This
advantageous feature makes GAs readily applicable
to real-world problems where the LSFs are generally
implicit with respect to random variables.

3.4 Genetic operators

Cross-over and mutation are genetic operators.
Crossover operates on two chromosomes at a time
and results in two new chromosomes. A simple
binary crossover with two cut point is illustrated in
Figure 4.

Parent Chromosomes New Chromosomes

Cut Points

1 111111111

0 00000000 0

1 1111

11 1

11

0 000

000

00 0

CROSSOVER

Figure 4. Crossover of two chromosomes.

Mutation operates on a chromosome by mutate a
gene in a chromosome to produce new chromosome.
A binary mutation converts the randomly selected
genes from 0 to 1 or from 1 to 0 (see Figure 5).

Figure 5. Mutation on a chromosome.

4. Multimodal GAs

4.1. General

Simple GAs perform well in locating a single
optimum but face difficulties when requiring
multiple optima [5], [13], [14], [16], [18]. Even there
exist multiple optima in the search space, the simple
GAs will converge to a single optimal point. This is
the result of genetic drift, which is the tendency of
the GAs to converge over time to one optimal point
within the search space [16]. The term genetic drift
explains the effect of a loss of population diversity
that occurs due to the stochastic nature of selection in
a finite population [12]. As to avoid the solution
population to converge to a single optimal point,
mechanisms of diversification have been proposed to
force GAs to maintain a diverse population [5], [13],
[14]. Niching methods extend the simple GAs to
maintain the population diversity and provide the
stability of subpopulations in the vicinity of optimal
solutions in a multimodal domain [5], [13], [14].
Niching method thus can identify the multiple
solutions with certain extent of diversity [16].
Among niching methods, Standard Crowding
Genetic Algorithms (SCGAs) [5] and Deterministic
Crowding Genetic Algorithms (DCGAs) [13], [14]

SSARS 2009
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland

 149

have been commonly used in multimodal functions
optimization. These two methods will be used as
tools for locating multiple design points herein. It
should be noted that both SCGAs and DCGAs,
however, are originally designed for unconstrained
optimization problems. To handle the constraint (2),
the adaptive penalty described in the previous section
will be used in both SCGAs and DCGAs.

4.2. Standard crowding genetic algorithms
(SCGAs)

SCGAs was proposed by De Jong [5]. The intention
of the methodology is to preserve diversity and slow
down convergence on multimodal functions,
specifically Shekels Foxholes multimodal function.
Premature convergence is reduced in SCGAs by
minimizing changes in the overall population
distribution between generations [16]. According to
SCGAs, the procedure revises the population by
replacing similar parent. The replacement for each
offspring produced is considered individually. For
each such individual, a sample of crowding factor
(CF) individuals are randomly drawn from the parent
population and searched for the most similar bit-
string to the offspring in question. Similarity is
measured as the number of point differences between
the equal length bit-strings, called the Hamming
distance. The most similar individual from the small
sample, i.e. from CF, is then directly replaced in the
population by the offspring, without regard for
fitness [2]. The following provides the pseudo code
of SCGAS [2].

G : Generational gap; ratio of the

reproduced population in each
generation.

NPop : Population size.
CF : Crowding Factor; the size of sample

taken from population and searched for
the most similar.

1. Randomly initialize population.
2. Evaluate fitness of the population.
3. Loop until stop condition:

a.Select population set of size G× NPop by
fitness proportion.

b. Crossover to generate G× NPop offspring.
c.Evaluate fitness of offspring.
d. Loop for each offspring:

i. Randomly select sample size of CF
from the parent population.

ii. Search for most similar in sample in
comparison with the offspring.

iii. Replace most similar in population
with offspring irrespective of fitness.

4.2. Deterministic crowding niche genetic
algorithms (DCGAS)

Mahfoud [13], [14] proposed a simple multimodal
GAs and is known as Deterministic Crowding Niche
Genetic Algorithms (DCGAS). DCGAS work as
follows. First all population elements are grouped
into N/2 pairs, where N is number of population. The
crossover and mutation are the applied to all pairs.
Each offspring competes against one of the parents
that produced it. For each pair of offspring, two sets
of parent-child tournaments are possible. DCGAS
hold the set of tournaments that forces the most
similar elements to compete. Like in sharing,
similarity can be measured using either genotype or
phenotype distance. The DCGAS is indeed a special
case of SCGAS where the crowding factor, CF,
equals to 2. They were developed to improve De
Jong’s basic crowding scheme. The following
provides a pseudo code of DCGAS [2].

NPop : Population size.
d(x, y) : Distance between individuals x and y.
F(x) : Fitness of individual population

member.

1. Randomly initialize population.
2. Evaluate fitness of population.
3. Loop until stop condition:

a. Shuffle the population.
b. Crossover to produce NPop/2 pairs of

offspring.
c. Apply mutation (optional).
d. Loop for each pair of offspring:

i. If
(d(parent1,child1)+d(parent2,child2))
≤
(d(parent2,child1)+d(parent1,child2)).

1. If F(child1) > F(parent1),
child1 replaces parent1.

2. If F(child2) > F(parent2),
child2 replaces parent2.

ii. Else
1. If F(child1) > F(parent2),

child1 replaces parent2.
2. If F(child2) > F(parent1),

child2 replaces parent1.

Instead of using De Jong’s crowding factor, DCGAS
method compares the new offspring directly to their
parents. The parents are replaced only if the children
have higher fitness [2].

Harnpornchai Napat
Genetic Algorithms-aided Reliability Analysis

 150

5. Applications of algorithms to reliability
analysis

5.1. Determination of PML

5.1.1. Problem formulation

Since PML is the point of highest probability density
function in the failure domain, the PML x* can be
obtained from solving the following optimization
problem:

 Maximize () ()xx XfO =3

 Subject to () 01 ≤xg
 …
 () 0≤xjg

 …
 () 0≤xNCg

(9)

(10.1)

(10.j)

(10.NC)

in which fX(x) is the Joint Probability Density
Function (JPDF) of X = [X1 … XN]T and gj(x) (j = 1,
…, NC) is the jth LSF. N and NC are the total
number of basic random variables and the total
number of limit state functions, respectively. The
corresponding fitness function is

 ()
()

() ()







−= ∑
=

infeasible is ;

feasible is ;

1
3

3

xxx

xx
NC

j
jj vkO

O
xF

(11)

, where kj and vj(x) are defined as in Eqs. (6) and (7),
respectively.

5.1.2. Numerical example 1: a plate with an
edge crack [19]

Consider a plate with an edge crack. When the
cracked plate is loaded in combined tensile and
bending, the total stress intensity factor totalI−K is

given by:

 bending-Itension-Itotal-I KKK +=

 () ()[] At/AFSt/AFS πbendingbtensiont +=

(12)

where

tensionI−K is the tensile stress intensity factor

and
bending-IK is the bending stress intensity factor. St

is the tensile stress, Sb is the outer-fiber bending
stress, A is the crack depth and t is the plate
thickness. A, St, and Sb are statistically independent
random variables. The crack depth A is modelled by
the exponential random variable whose PDF is

 () 







−=

AA
A

a
expaf

µµ
1

(13)

, where the mean crack depth µA is 6 mm. The
thickness of the plate is constant and deterministic.
The thickness in this example is set equal to 100 mm.
The tensile stress St and the bending stress Sb are
modelled by normal random variables. Accordingly,
the PDF of St is

 () ()









 −
−=

2
t

2
tt

t

tt 22

1

S

S

S

S

s
expsf

σ
µ

σπ

(14)

where µSt and σSt is the mean and standard deviation
of St, respectively. Similarly, the PDF of Sb is

 () ()









 −
−=

2
b

2
bb

b

bb 22

1

S

S

S

S

s
expsf

σ
µ

σπ

(15)

in which µSb and σSb is the mean and standard
deviation of Sb, respectively. The mean tensile stress
µSt is 20 MPa and the associated Coefficient of
Variation (COV) is 0.10. The mean bending stress
µSb is 10 MPa and the corresponding COV is 0.20.
The fracture toughness KIc is modelled by three-
parameter Weibull random variable with the
Cumulative Distribution Function (CDF) [20].

 ()























−
−

−−=
b

K kk

kk
expkF

mino

minIc
IcIc 1

(16)

, where ()IcIc kFK is the cumulative distribution

function of fracture toughness, kmin is the location
parameter, ko is the scale parameter, and b is the
shape parameter. Mean toughness in terms of the
Weibull distribution parameters is

 () 






 +−+=
b

kkk
1

1minominKIc Γµ

(17)

in which Γ(.) is the gamma function. Standard
deviation is then equal to

2

minIc
Ic

1
1

2
1

1
1
















 +−






 +







 +

−
=

bb

b

kK
K ΓΓ

Γ

µσ

(18)

The mean toughness µKIc is 200 mMPa . b = 4 and

kmin = 20 mMPa . The corresponding PDF of KIc is

SSARS 2009
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland

 151

 ()
b

kk

kkb

K e
kk

kk

kk

b
kf










−
−

−
−










−
−

−
= mino

minIc1

mino

minIc

mino
IcIc

(19)

All random variables including the associated mean
and COV values are summarized in Table 2. The
original JPDF is thus

 () () () () ()IcIcbbtt11 kfsfsfaff KSSA=xX (20)

, where []TKSSA Icbt1 =X is the vector of all

random variables.

Table 2. Description of random variables in Example
1.

Random
Variable

Distribution
Type

Mean COV

A Exponential 6.00x10-3 m 1
St Normal 20 MPa 0.10
Sb Normal 10 MPa 0.20
KIc 3-parameter

Weibull
200 mMPa Eqs. (18)

and (19)

Tada [21] gives several formulas for F(A/t). The
following formulas are used in this example and they
are applicable for any A/t.

()
()








×

























−++
=

t

A

A

t

t

A

t

A
tA

tAF

2
tan

2

2
cos

2
sin137.0/02.2752.0

/

3

tension

π
π

π

π

(21.1)

 ()








×

























−+
=

t

A

A

t

t

A

t

A

tAF

2
tan

2

2
cos

2
sin1199.0923.0

/

4

bending

π
π

π

π

(21.2)

The LSF is defined as

 () totalIIcIctotalI , −− −= KKKKg (22.1)

or () ()bttotalIIcIcbt ,,,,, SSAKKKSSAg −−= (22.2)

in which KIc is the fracture toughness.
GAs have been applied to determine PML first. The
objective function according to Eq. (9), is

 () () () () ()IcIcbbttIcbt ,,, kfsfsfafkssaO KSSA= (23)

The magnitude of the constraint violation, according
to Eqs. (7) and (22), is

() () ()


 >−

= −

otherwise ;0

0,,, ;,,
,,, IcbtbttotalIIc

Icbt

kssagssakk
kssav

(24)

It is noted from Eq. (12) that KI-total is the function of
A, St, and Sb. The fitness function is thus

() () ()
() () ()




>−
≤

=
0,,,;,,,,,,

0,,,;,,,
,,,

IcbtIcbtIcbt

IcbtIcbt
Icbt kssagkssakvkssaO

kssagkssaO
kssaF

(25)

Table 3: PML in Example 1.

PML Magnitude at PML
a* 84.4x10-3 m
st

* 20.0 MPa
sb

* 10.0 MPa
kIc

* 205
mMPa

GAs search employs the population size of 100. The
number of generations used in the search is 100. A
two-point crossover is utilized with the crossover
rate of 0.8. The mutation rate is taken as 0.002.
Figure 6 shows the history of the average fitness of
the feasible chromosomes. The resulting PML is
shown in Table 3.Although the LSFs in the example
is explicit, the numeric -based feature of GAs
naturally enable the algorithms applicable to the case
of implicit LSFs.
With respect to this feature, the approximation of
implicit LSFs is not necessary. The error from such
an approximation is thus not encountered.Based on
the introduced concept and implementation, GAs is
readily applicable to higher dimensional problems.
Due to the algorithmic simplicity, the
implementation of GAs does not require any
additional effort.

Figure 6. The history of the average fitness of the
feasible chromosomes.

Harnpornchai Napat
Genetic Algorithms-aided Reliability Analysis

 152

5.2. GAs-aided importance sampling

5.2.1. Principles

The probability pF of a failure event F is obtained
from

 () xxX dfp

FD

F ∫= (26)

, where DF is the subspace corresponding to the
failure event F in a multidimensional space of X1,…,
XN and will be referred to as the event or failure
domain. fX(x) is the JPDF of X1,…, XN. Using the
importance sampling technique, Eq. (26) is modified
to

 () ()
() () yy
y

y
y X

X

X dh
h

f
IpF ∫= (27.1)

,or () ()
() () yy
y

y
y X

X

X dh
h

f
IpF ∫= (27.2)

Note that the subscript h signifies that the
expectation E is taken with respect to an importance
sampling PDF or Importance Sampling Function
(ISF) hX(x). The failure probability is estimated as

 () ()
()jX

jX
j Y

Y
Y

h

f
I

Nsim
P

Nsim

j
F ∑

=

=
1

1 (28)

in which Yj is the j-th sample from the ISF hX(x) and
Nsim is the sample size.
The PML obtained from GAs search can enhance the
efficiency of Monte Carlo Simulation (MCS). The
efficiency enhancement is accomplished by
employing the GAs-searched PML as the sampling
center of the ISF hX(x). This sampling scheme is
denoted as an Importance Sampling around PML
(ISPML). For the purpose of procedure clarity, the
original JPDF fX(x) will be rewritten as fX(x|µµµµ=µµµµo) in
which µµµµ denotes the mean vector. µµµµo is the original
mean vector. According to the ISPML, the ISF hX(x)
takes the form

 () ()*|fh xµxx XX == (29)

, where x* is PML. That is the ISF has the same
functional form as the original JPDF. The mean
vector of the ISF, however, is different from that of
the original JPDF and takes the PML as the mean
vector. Consequently, the estimate of the failure
probability is

 () ()
()*

Nsim

j
F

|f

|f
I

Nsim
P

xµY

µµY
Y

jX

jX
j =

=
= ∑

=

o

1

1 (30)

5.2.2. Numerical example 2: a plate with an
edge crack [19]

Based on the GAs-searched PML, the ISF takes the
form defined by Eq. (29) with the mean equal to
PML, i.e.

 []Tkssa ∗∗∗∗= Icbtµ (31)

The ISF as defined by Eq. (29) is used for computing
the failure probability according to the LSF (22). The
results are compared with MCS and shown in
Figures 7, 8, and Figure 9. The estimate of the
failure probability in each MCS and ISPML
methodology is based on 10 independent runs. The
sample sizes shown in all figures are the values used
in each respective run.

Figure 7. Estimates of failure probability from MCS
and ISPML.

Figure 7 shows that the estimated failure probability
is at the order of 106. The theoretical sample sizes
required by MCS for the estimation are at least 106.
The same figure also shows the sample sizes used by
ISPML in order to compute the failure probability. It
is obvious that the sample sizes used by ISPML are
much smaller than the theoretically required sample
sizes for MCS. Figure 8 shows the variation of COV
with respect to different sample sizes in both MCS
and ISPML cases. The rate of COV reduction with
respect to sample size in case of ISPML is
significantly higher that that in case of MCS.

Figure 8. Effect of sample size on estimate COV.

SSARS 2009
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland

 153

Figure 9. Sample sizes used by MCS and ISPML,
with respect to the estimate COVs.

The same information in Figure 8 is rearranged and
plotted in Figure 9. Symbols � and � in Figure 9
indicate that MCS employs the sample sizes
approximately 1,000 times larger than ISPML uses in
order to attain the same confidence level of estimate
or estimate COV. ISPML is thus more efficient than
MCS with respect to the quality of the estimate and
the computational resource consumption. In this
respect, GAs significantly contributes to the
reduction in computational complexity. GAs also
realizes the estimation of failure probability in the
situation where the size of sampling is limited by the
availability of computational resources. According to
the numerical results, the computation of failure
probability can demand considerable computation
resource although the system dimension is large.
In summary, GAs can be used as tool for enhancing
the efficiency in risk analysis by providing such
crucial information as the PML which is then
employed in the analysis procedure.

5.3. Determination of multiple design points

5.3.1. Problem characteristics

Design point is the point on the limit state surface
that is nearest to the origin in a standard normal
space. In optimization context, the design point is the
global minimum obtained from solving a constrained
optimization problem. However, it is possible that
there are other local minima whose distances to the
origin are of similar magnitudes to the global
minimum. The global minimum and local minima
with similar magnitudes lead to the situation of
multiple design points. When multiple design points
exist, the reliability analysis based only on any single
design point among the multiple design points may
result in an underestimation of failure probability.
Determination of global optimum as well as local
optima belongs to a multimodal function
optimization. The following section intends to
demonstrate the application SCGAs and DCGAs to
the determination of multiple design points. Since
SCGAs and DCGAs are originally designed for
unconstrained optimization problems, it is necessary

to provide means of handling constraints. The
adaptive penalty technique as proposed in [17] and
described in Section 3.3 will be combined with
SCGAs and DCGAs for handling constraints.

5.3.2. Problem formulation

From the definition of the design point, the design
point U* is obtained from solving the following
constrained optimization problem:

 Minimize

 () UU =O

 Subject to constraints () 0=Ug

(32)

(33)

in which U = [U1 … UN]T denotes the vector of
standard normal variables. g(U) is the LSF. N is the
total number of basic random variables. g(U) = 0 is

the limit state surface and g(U) ≤ 0 indicates the
failure state corresponding to the LSF. For the
constrained optimization above, there may exist
several optima whose objective function values are
of similar magnitudes to the global maximum.
Erroneous results occur if the optima from which the
neighborhoods have significant contributions to the
reliability assessment have not been located and so
have been neglected. It is, therefore, necessary to
locate global optimum as well as local optima. This
can be achieved by solving a constrained multimodal
optimization problem of the form (32) and (33).

5.3.3. Numerical example 3: a highly non-
linear limit state function

This example considers the following complicate
LSF as introduced in [17].

 () () 2121 56 UUcosU,Ug −−= (34)

where U1 and U2 are independent standard normal
variables. Although the problem is of low dimension,
the purpose of this problem is to illustrate the
capability of multimodal GAs in determining
multiple design points under situation of highly
nonlinear LSF. Figure 10 displays the plot of the
limit state surface in 2-dimensional space. The plot
of the limit state surface shows that all local optima
are at the base or bottom of the wavy limit state
surface.

Harnpornchai Napat
Genetic Algorithms-aided Reliability Analysis

 154

Figure 10. The limit state surface as in Eq. (34).

The equality constraint (34) is modified to an
equality constraint for the purpose of its handling.
The resulting equality constraint is

 () () δ−−−= 21213 56 UUcosU,Ug (35)

,where δ is the tolerance of being null. The value of δ
is set to a small value to ensure that the obtained
solution is closed to the limit state surface as much as
possible.
Since GAs are originally designed for maximization
problems, the fitness function according to the
expressions (32) and (33) is defined as

 () ()21
21 ,

1
,

UUH
UUF = (36)

() () ()
() () ()




>+
≤

=
0,;,,

0,;,
,

2132121

21321
21 UUgUUkvUUO

UUgUUO
UUH

(37)

 () 2
2

2
121, UUUUO += (38)

The magnitude of the constraint violation, according
to Eqs. (7) and (35), is

 () () ()


 >

=
otherwise ;0

0 ; 213213
21

U,UgU,Ug
U,Uν

(39)

Both SCGAs and DCGAs are employed to search for
design points in the domain of [-4,4]×[0,7]. The
search results from each respective algorithm are
separately shown in the following subsections. It
should be noted in Eq. (37) that the penalty term is
added to the objective function (38), instead of
subtracting it, because the problem is a minimization
problem.

5.3.3.1. SCGAs

The parameters for the SCGAs are given in Table 4.

The evolutions of the search using SCGAs approach
are shown in Figure 11. The evolution also shows
the so-called genetic drift effect.

a) 1st generation b) 10th generation

c) 20th generation d) 50th generation

e) 80th generation

f) 100th generation

Figure 11.Chromosomes distribution at various
generations by SCGAs in Example 3.

The genetic drift normally happens with the niche
methods such as SCGAs and DCGAs.The genetic
drift leads to the possible lost of the already captured
optima. The optima found by SCGAs are also shown

in Table 5. δ in Eq. (35) is equal to 0.01.

Table 4. SCGAs parameters for Example 3.

Parameters Value
NPop 500

Pc 1.00
G 0.1

CF 0.2
Number of Generations 100

5.3.3.2. DCGAs

The parameters for the DCGAs are given in Table 6.
The search results by DCGAs at different

SSARS 2009
Summer Safety and Reliability Seminars, July 19-25, 2009, Gdańsk-Sopot, Poland

 155

generations are shown in Figure 12. δ in Eq. (35) is
equal to 0.01. The optima are summarized in Table 5.
The GAs results explicate that both SCGAs and
DCGAs have noticeable capabilities in
simultaneously locating several design points under
the LSFs with high non-linearity and irregular
geometry. Regarding to two utilized multimodal
GAs, it is possible that the found design points in
early generations can be lost due to the inherent
genetic drift. When considering from the plots of
population distributions at different generations,
DCGAs are more stable in maintaining the found
results than SCGAs. The numerical results also
suggest that DCGAs provide better quality of
solutions than SCGAs. It should be noted that the
multimodal GAs work in a different manner from the
sequential search methods, such as the gradient-
based methods, where the decision on the numbers of
the desired design points must be made by the user.
It is possible that some significantly contributing
design points may be ignored if the search is stopped
before total numbers of the influential design points
are obtained. In that case, the failure probability is
certainly underestimated. The multimodal GAs,
therefore, naturally circumvents such a difficulty.

Table 5: Comparison of exact multiple design points
with the design points from SCGAs and DCGAs.

X1 X2 Optima
Exact SCGAs DCGAs Exact SCGAs DCGAs

1 -3.75 -3.71 -3.74 5.00 5.19 5.01
2 -2.50 -2.65 -2.51 5.00 5.54 5.00
3 -1.25 -1.21 -1.26 5.00 5.10 5.00
4 0.00 -0.07 0.01 5.00 5.09 5.00
5 1.25 1.18 1.25 5.00 5.09 5.00
6 2.50 2.58 2.50 5.00 5.10 5.00
7 3.75 3.75 3.75 5.00 5.05 5.03

Table 6. DCGAs parameters for Example 3.

Parameters Value
Npop 500

Pc 1.00
Number of Generations 100

a) 1st generation b) 10th generation

c) 20th generation d) 50th generation

e) 80th generation

f) 100th generation

Figure 12. Chromosomes distribution at various
generations by DCGAs in Example 3.

6. Conclusion

Application of Genetic Algorithms (GAs) to
reliability analysis is described, discussed, and
summarized in this paper. Simple GAs and
Multimodal GAs are addressed. GAs are applied to
solve key problems in reliability analysis. The
problems include the determination of the Point of
Maximum Likelihood in failure domain (PML), the
computation of failure probability using the so-called
Importance Sampling around PML (ISPML), and the
determination of multiple design points. GAs-aided
reliability analysis requires no approximation of
Limit State Functions (LSFs) although the LSFs are
implicit, non-linear, non-differentiable, and noisy.
Consequently, the computational modeling errors of
LSFs are circumvented. The numeric-based feature
of GAs also makes the requirement on the
knowledge and visualizability of the geometry or
landscape of limit state surfaces become
unnecessary. The capability in the reliability analysis
of complex systems, where their knowledge is not

Harnpornchai Napat
Genetic Algorithms-aided Reliability Analysis

 156

always given and their visualizability are generally
not possible, is thus enhanced. From the viewpoint of
computational performance, the computational
efficiency with respect to the sample size is
significantly improved via the utilization of GAs-
searched PML in ISPML and the substantial
reduction in sample size. The reliability analysis of
rare events can be realized even if the computational
resources are limitedly provided. In case of multiple
design points, the population-based nature of GAs
can be advantageously employed to automatically
detect those crucial information points
simultaneously. Unlike sequential search algorithms,
the information about the number of design points is
not necessary. The multimodal GAs, therefore,
reduces the possibility of missing influential design
points. Finally, the algorithmic simplicity of GAs in
implantation is considered a highly attractive feature
from the viewpoint of software engineering and
practical application.

References

[1] Barbosa, H. & Lemonge, A. (2003). A new
adaptive penalty scheme for genetic algorithms.
Information sciences, 156, 215-251.

[2] Brownlee, J. (2004). Parallel Niching Genetic
Algorithms: A Crowding Perspective. Thesis in
Master of Information Technology, Centre for
Intelligent Systems and Complex Processes,
School of Information Technology, Swinburne
University of Technology, Australia.

[3] Darwin, Ch. (1869). On the Origin of Species by
Means of Natural Selection, or the Preservation
of Favoured Races in the Struggle for Life. 5th
ed., John Murray, London.

[4] Deb, K. (1995). Optimization for Engineering
Design Algorithms and Examples. Prentice-Hall,
New York.

[5] De Jong, K.A. (1975). An analysis of the behavior
of a class of genetic adaptive systems. Ph.D.
Thesis, Department of Computer Science,
University of Michigan, Ann Arbor, MI, USA.

[6] Fishman, G. (1996). Monte Carlo: Concepts,
Algorithms, and Applications. Springer-Verlag,
New York.

[7] Gen, M. & Cheng, R. (1997). Genetic algorithms
and engineering design. John Wiley and Sons,
New York.

[8] Gen, M. & Yun, Y.S. (2006). Soft computing
approach for reliability optimization: State-of-the-
art survey. Reliability Engineering and System
Safety, 91, 1008–1026.

[9] Goldberg, D.E. (1989). Genetic Algorithms in
Search, Optimization and Machine Learning.
Massachusetts, Addison-Wesley, 1989.

[10] Harnpornchai, N., Chakpitak, N.,
Chandarasupsang, T., Tuang-Ath Chaikijkosi. &
Dahal, K. (2007). Dynamic adjustment of age
distribution in Human Resource Management by
genetic algorithms. Evolutionary Computation,
CEC 2007, IEEE Congress on 25-28 Sept. 2007,
1234 – 1239

[11] Holland, J.H. (1975). Adaptation in Natural and
Artificial Systems. University of Michigan Press,
Ann Arbor, Michigan.

[12] Kimura, M. (1983). The Neutral Theory of
Molecular Evolution. Cambridge University
Press.

[13] Mahfoud, S.W. (1995). A comparison of parallel
and sequential niching methods. International
Conference on Genetic Algorithms, 136-143.

[14] Mahfoud, S.W. (1995). Niching methods for
genetic algorithms. Ph.D. dissertation, Univ. of
Illinois, Urbana-Champaign.

[15] Michalewicz, A. (1996). Genetic + Data
Structures = Evolution Programs. Second ed.
Berlin, Springer.

[16] Miller, B.L & Shaw, M.J. (1995). Genetic
algorithms with dynamic niche sharing for multi-
modal function optimization. IlliGAL Report no.
9510.

[17] Obadage, A.S. & Hampornchai, N. (2006).
Determination of point of maximum likelihood in
failure domain using genetic algorithms. Int J
Press Vessels Pipe, 83(4), 276-82.

[18] Qing, L., Gang, W., Zaiyue, Y. & Qiuping, W.
(2008). Crowding clustering genetic algorithm for
multi-modal function optimization,. International
Journal of Applied Soft Computing, Volume 8,
Issue 1, 88-95.

[19] Sprung, I. (2003). Invariance of safety factor in
probabilistic fracture mechanics analysis. Int J
Press Vessels Pipe, 80, 367–378.

[20] Tada, H. (1978). The stress analysis of cracks
handbook. Del Research Corporation.

[21] Wallin, K. (1984). The scatter in KIc results.
Engng Fract Mech,19,1085–93.

