PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of SSVEP based on empirical mode decomposition and power spectrum peaks analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Steady-state visual evoked potential (SSVEP) based brain–computer interfaces have been widely studied because these systems have potential to restore capabilities of communication and control of disable people. Identifying target frequency using SSVEP signals is still a great challenge due to the poor signal-to-noise ratio of these signals. Commonly, this task is carried out with detection algorithms such as bank of frequency-selective filters and canonical correlation analysis. This work proposes a novel method for the detection of SSVEP that combines the empirical mode decomposition (EMD) and a power spectral peak analysis (PSPA). The proposed EMD+PSPA method was evaluated with two EEG datasets, and was compared with the widely used FB and CCA. The first dataset is freely available and consists of three flickering light sources; the second dataset was constructed and consists of six flickering light sources. The results showed that proposed method was able to detect SSVEP with high accuracy (93.67 ± 9.97 and 78.19 ± 23.20 for the two datasets). Furthermore, the detection accuracy results achieved with the first dataset showed that EMD+PSPA provided the highest detection accuracy (DA) in the largest number of participants (three out of five), and that the average DA across all participant was 93.67 ± 9.97 which is 7% and 4% more than the average DA achieved with FB and CCA, respectively.
Twórcy
  • Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Zapopan, Jalisco, Mexico
  • Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, Jalisco, Mexico
  • Universidad EAN, Facultad de Ingeniería, Bogotá, Colombia
  • Universidad Antonio Narino, Grupo Bioingeniería, Bogotá, Colombia
Bibliografia
  • [1] Womelsdorf T, Fries P. The role of neuronal synchronization in selective attention. Curr Opin Neurobiol 2007;17(2):154–60.
  • [2] Zhu D, Bieger J, Garcia Molina G, Aarts RM. A survey of stimulation methods used in SSVEP-based BCIs. Comput Intell Neurosci 2010;2010.
  • [3] Norcia A, Appelbaum L, Ales J, Cottereau B, Rossion B. The steady-state visual evoked potential in vision research: a review. J Vision 2015;15(6):5.
  • [4] Jeffreys A. Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Trends Neurosci 1989;12(10):413–4.
  • [5] Herrmann C. Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 2001;137 (3-4):346–53.
  • [6] Guger C, Allison B, Grosswindhager B, Prückl R, Hintermüller C, Kapeller C, et al. How many people could use an SSVEP BCI? Front Neurosci 2012;6:169.
  • [7] Zhang Y, Xu P, Huang Y, Cheng K, Yao D. SSVEP response is related to functional brain network topology entrained by the flickering stimulus. PLOS ONE 2013;8(9):1–11.
  • [8] Middendorf M, McMillan G, Calhoun G, Jones KS. Brain– computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng 2000;8(2):211–4.
  • [9] Lopez MA, Pelayo F, Madrid E, Prieto A. Statistical characterization of steady-state visual evoked potentials and their use in brain–computer interfaces. Neural Process Lett 2009;29(3):179–87.
  • [10] Wang Y, Wang R, Gao X, Hong B, Gao S. A practical VEP-based brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 2006;14(2):234–9.
  • [11] Wang Y, Gao X, Hong B, Jia C, Gao S. Brain–computer interfaces based on visual evoked potentials. IEEE Eng Med Biol Mag 2008;27(5):64–71.
  • [12] Cecotti H. Spelling with non-invasive brain–computer interfaces-current and future trends. J Physiol Paris 2011;105(1–3):106–14.
  • [13] Stawicki P, Gembler F, Volosyak I. Driving a semiautonomous mobile robotic car controlled by an SSVEP-based BCI. Comput Intell Neurosci 2016;2016.
  • [14] Wang M, Li R, Zhang R, Li G, Zhang D. A wearable SSVEP- based BCI system for quadcopter control using head-mounted device. IEEE Access 2018;6:26789–98.
  • [15] Lin C, Chiu C, Singh AK, King J, Wang Y. A wireless multifunctional SSVEP-based brain computer interface assistive system. IEEE Trans Cogn Dev Syst 2018;1.
  • [16] Ortner R, Allison BZ, Korisek G, Gaggl H, Pfurtscheller G. An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 2011;19(1):1–5.
  • [17] Lalor EC, Kelly SP, Finucane C, Burke R, Smith R, Reilly RB, et al. Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. Eurasip J Appl Signal Process 2005;2005(19):3156–64.
  • [18] Trejo LJ, Rosipal R, Matthews B. Brain–computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Trans Neural Syst Rehabil Eng 2006;14 (2):225–9.
  • [19] Bi L, Lian J, Jie K, Lai R, Liu Y. A speed and direction-based cursor control system with P300 and SSVEP. Biomed Signal Process Control 2014;14:126–33.
  • [20] Carvalho SN, Costa TB, Uribe LF, Soriano DC, Yared GF, Coradine LC, et al. Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs. Biomed Signal Process Control 2015;21:34–42.
  • [21] Demir AF, Arslan H, Uysal I. Bio-inspired filter banks for SSVEP-based brain-computer interfaces. 3rd IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2016 (February). 2016. pp. 144–7.
  • [22] Lin Z, Zhang C, Wu W, Gao X. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng 2007;54(6):1172–6.
  • [23] Bin G, Gao X, Yan Z, Hong B, Gao S. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J Neural Eng 2009;6(4):046002.
  • [24] Chen X, Wang Y, Gao S, Jung T-P, Gao X. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface. J Neural Eng 2015;12(4):046008.
  • [25] Wu Z. Application of a reconstruction technique in detection of dominant SSVEP frequency. Biomed Signal Process Control 2018;40:226–33.
  • [26] Zhang Y, Jin J, Qing X, Wang B, Wang X. LASSO based stimulus frequency recognition model for SSVEP BCIs. Biomed Signal Process Control 2012;7(2):104–11.
  • [27] Huang L, Huang X, Wang Y-t, Wang Y, Jung T-p, Cheng C-k. Empirical mode decomposition improves detection of SSVEP. 35th Annual International Conference of the IEEE EMBS. 2013. pp. 3901–4.
  • [28] Tello R, Muller SMT, Bastos-Filho T, Ferreira A. Comparison of new techniques based on EMD for control of a SSVEP-BCI. IEEE International Symposium on Industrial Electronics. 2014. pp. 992–7.
  • [29] Zhao L, Yuan P, Xiao L, Meng Q, Hu D, Shen H. Research on SSVEP feature extraction based on HHT. Proceedings – 2010 7th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2010 5 (FSKD); 2010. p. 2220–3.
  • [30] Wu C-H, Chang H-C, Lee P-L, Li K-S, Sie J-J, Sun C-W, et al. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing. J Neurosci Methods 2011;196 (1):170–81.
  • [31] Ge S, Shi Y, Wang R, Lin P, Gao J, Sun G, et al. Sinusoidal signal assisted multivariate empirical mode decomposition for brain–computer interfaces. IEEE J Biomed Health Informatics 2018;22(5):1373–84.
  • [32] Kalunga E, Djouani K, Hamam Y, Chevallier S, Monacelli E. SSVEP enhancement based on Canonical Correlation Analysis to improve BCI performances. IEEE Africon Conference; 2013.
  • [33] Wei CS, Lin YP, Wang Y, Wang YT, Jung TP. Detection of steady-state visual-evoked potential using differential canonical correlation analysis. International IEEE/EMBS Conference on Neural Engineering, NER. 2013. pp. 57–60.
  • [34] Liu T, Zhang Y, Wang L, Li J, Xu P, Yao D. Fusing canonical coefficients for Frequency recognition in SSVEP-based BCI. IEEE Access 2019;1.
  • [35] Zhang Y, Zhou G, Jin J, Wang X, Cichocki A. Common feature analysis for recognizing steady-state visual evoked potential in brain–computer interface. Bsp Brain Riken Jp 2013;1–17.
  • [36] Lin Z, Zhang C, Wu W, Gao X. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng 2007;54(6):1172–6.
  • [37] Huang N, Shen Z, Long S, Wu M, Shin H, Zheng Q, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A: Math Phys Eng Sci 1998;454(1971):903–95.
  • [38] McFarland DJ, Wolpaw JR. Sensorimotor rhythm-based brain-computer interface (BCI): model order selection for autoregressive spectral analysis. J Neural Eng 2008;5(2):155–62.
  • [39] Lebedev MA, Nicolelis MA. Brain-machine interfaces: past, present and future. Trends Neurosci 2006;29(9):536–46.
  • [40] Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtschellere G, Vaughana TM. Brain Computer Interfaces for communication and control. Clin Neurophysiol 2002;113:767–91.
  • [41] Pan J, Li Y, Zhang R, Gu Z, Li F. Discrimination between control and idle states in asynchronous SSVEP-based brain switches: a pseudo-key-based approach. IEEE Trans Neural Syst Rehabil Eng 2013;21(3):435–43.
  • [42] Antelis JM, Gudiño-Mendoza B, Falcón LE, Sanchez-Ante G, Sossa H. Dendrite morphological neural networks for motor task recognition from electroencephalographic signals. Biomed Signal Process Control 2018;44:12–24.
  • [43] Virgilio González CJA, Antelis J, Falcón L. Spiking neural networks applied to the classification of motor tasks in EEG signals. Neural Netw 2020;122:130–43.
  • [44] Gajic D, Djurovic Z, Di Gennaro S, Gustafsson F. Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition. Biomed Eng: Appl Basis Commun 2014;26.
  • [45] Gajic D, Djurovic Z, Gligorijevic J, Di Gennaro S, Savic-Gajic I. Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis. Front Comput Neurosci 2015;9:38.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db2dafc1-01e8-42d6-ba59-afefcff4f481
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.