PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparison between directly connected and MPPT connected solar powered water pumping system using PMDC motor

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper represents a comparative analysis of two photovoltaic pumping systems. To study the performance of the Maximum Power Point Tracking (MPPT) system, two models were simulated using Matlab/Simulink and the performance of a directly connected photovoltaic (SPV) pumping system was compared to an MPPT connected SPV pumping system at various levels of solar irradiance. The MPPT system maximizes overall system efficiency, but makes the system complex compared to the directly connected SPV pumping system. Instead of the conventional boost converter the MPPT system contains a buck converter to maintain overall system voltage at the lower levels required by the permanent magnet DC (PMDC) motor. For simplicity, the MPPT controller follows the perturbation and observation (P & O) algorithm and controls the buck converter to maximize overall system efficiency at various levels of solar irradiance. The PMDC motor provides high weight-to-torque density, better speed control, low inertia, and lower losses compared to induction and the conventional DC motor. The comparative analysis shows that the MPPT connected SPV system is more efficient than the directly connected SPV system for water pumping purposes using a PMDC motor.
Rocznik
Strony
80--88
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
autor
  • Department of Electrical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad - 826004, India
autor
  • Department of Electrical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad - 826004, India
Bibliografia
  • [1] N. Argaw, R. Foster, A. Ellis, Renewable energy for water pumping applications in rural villages; period of performance: April 1, 2001–september 1, 2001, Tech. rep., National Renewable Energy Laboratory (NREL), Golden, CO. (2003).
  • [2] A. Mokeddem, A. Midoun, N. Ziani, D. Kadri, S. Hiadsi, Test and analysis of a photovoltaic dc-motor pumping system, in: ICTON Mediterranean Winter Conference, 2007. ICTON-MW 2007, IEEE, 2007, pp. 1–7.
  • [3] M. A. Vitorino, M. B. R. Corrêa, High performance photovoltaic pumping system using induction motor, in: Power Electronics Conference, 2009. COBEP’09. Brazilian, IEEE, 2009, pp. 797–804.
  • [4] F. Zebiri, A. Kessal, L. Rahmani, A. Chebabhi, Analysis and design of photovoltaic pumping system based on nonlinear speed controller, Journal of Power Technologies 96 (1) (2016) 40–48.
  • [5] N. Chandrasekaran, G. Ganeshprabu, K. Thyagarajah, Comparative study of photovoltaic pumping system using a dc motor and pmdc motor, in: Advances in Engineering, Science and Management (ICAESM), 2012 International Conference on, IEEE, 2012, pp. 129–132.
  • [6] N. B. Yousuf, K. M. Salim, R. Haider, M. R. Alam, F. B. Zia, Development of a three phase induction motor controller for solar powered water pump, in: Developments in Renewable Energy Technology (ICDRET), 2012 2nd International Conference on the, IEEE, 2012, pp. 1–5.
  • [7] B. Singh, A. K. Mishra, R. Kumar, Solar powered water pumping system employing switched reluctance motor drive, IEEE Transactions on Industry Applications 52 (5) (2016) 3949–3957.
  • [8] R. Kumar, B. Singh, Solar photovoltaic array fed canonical switching cell converter based bldc motor drive for water pumping system, in: India Conference (INDICON), 2014 Annual IEEE, IEEE, 2014, pp. 1–6.
  • [9] H. M. Karkar, S. N. Pandya, V/F method for induction motor drive speed control using matlab simulation, Journal of Information Knowledge and Research in Electrical Engineering 2 (2) (2014) 192–197.
  • [10] P. Krause, O. Wasynczuk, S. D. Sudhoff, S. Pekarek, Analysis of electric machinery and drive systems, Vol. 75, John Wiley & Sons, 2013.
  • [11] N. Rebei, R. Gammoudi, A. Hmidet, O. Hasnaoui, Experimental implementation techniques of p&o mppt algorithm for pv pumping system, in: Systems, Signals & Devices (SSD), 2014 11th International Multi-Conference on, IEEE, 2014, pp. 1–6.
  • [12] M. G. Villalva, J. R. Gazoli, E. Ruppert Filho, Comprehensive approach to modeling and simulation of photovoltaic arrays, IEEE Transactions on power electronics 24 (5) (2009) 1198–1208.
  • [13] A. El Shahat, PV module optimum operation modeling, Journal of Power technologies 94 (1) (2014) 50–66.
  • [14] R. Schoenmaker, Developing a smart grid simulation model from an end-users perspective, Master’s thesis, Vniversity of Groningen, Groningen (January 2014).
  • [15] S. Sharma, R. Raman, K. Kaja, High efficiency lanco solar pv mono crystalline modules, Lanco Solar Pvt. Limited. URL http://www.lancosolar.com
  • [16] J. Milewski, M. Wolowicz, W. Bujalski, Methodology for choosing the optimum architecture of a stes system, Journal of Power Technologies 94 (3) (2014) 153–164.
  • [17] S. Chapman, Electric machinery fundamentals, Tata McGraw-Hill Education, 2005.
  • [18] A. A. Mahfouz, M. Mohammed, F. A. Salem, Modeling, simulation and dynamics analysis issues of electric motor, for mechatronics applications, using different approaches and verification by matlab/simulink, International Journal of Intelligent Systems and Applications 5 (5)
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db18b8bb-f968-46d2-bde7-95135a665c23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.