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This work describes a methodology for the automatic detection of unmineable inclusions while bucket wheel excavator 
(BWE) digging, using electromagnetic (EM) sensor and GPS. The overall methodology consists of data collection, pre-pro-
cessing and evaluation. Two different data evaluation approaches were developed and implemented in Matlab programming 
environment. A relatively simple one called Simple Mode, based on statistical process control and a more sophisticated one, 
called Advanced Mode, based on Position Prominence Index (PPI) and on Neural-Network based Pattern Recognition (NNPR). 
Synthetic electromagnetic data created and used (both in simple and advanced mode) for testing the algorithms extensively. 
Real data, surveyed by moving the EM sensor (CMD2 of GF Instruments) and GPS against a mine slope, were examined with 
the proposed methodology as well. Advanced Mode provided more accurate results than Simple Mode in automatic detection             
of unmineable inclusions. However it is sensitive in positioning accuracy and it requires access to EM data acquired in succes-
sive bucket wheel cuts.
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W pracy opisano metodologię automatycznego wykrywania nieurabialnych wtrąceń podczas normalnej pracy koparki wie-
lonaczyniowej (BWE) przy użyciu czujnika elektromagnetycznego (EM) i GPS. Ogólna metodologia obejmuje gromadzenie 
danych, wstępne przetwarzanie oraz ocenę. Opracowano dwa różne warianty oceny danych i wdrożono je w środowisku pro-
gramowania Matlab. Stosunkowo prosty, zwany Simple Mode, oparty na statystycznej kontroli procesu i bardziej zaawanso-
wany, zwany Advanced Mode, oparty na Position Prominence Index (PPI) oraz na Neural-Network based Pattern Recognition 
(NNPR). Utworzono i wykorzystano syntetyczne dane elektromagnetyczne (zarówno w trybie prostym, jak i zaawansowanym)  
do wszechstronnego testowania algorytmów. Uzyskane w warunkach terenowych dane pochodzące z czujnika EM (CMD2 z GF 
Instruments) i GPS przesuwanych na skarpie zabierki, zostały również przeanalizowano przy zastosowaniu ww. metodologii. 
Tryb zaawansowany (Advanced Mode) zapewnia dokładniejsze wyniki niż tryb prosty (Simple Mode) w automatycznym wy-
krywaniu nieurabialnych inkluzji. Jest jednak wrażliwy na dokładność pozycjonowania i wymaga dostępu do danych czujnika 
elektromagnetycznego (EM) uzyskanych w kolejno wybieranych przez koparkę wielonaczyniową pasmach zabierki.

Słowa kluczowe: koparka wielonaczyniowa, wtrącenia nieurabialne, elektromagnetyczne metody geofizyczne, automatycz-
ny algorytm

INTRODUCTION

One of the frequent problems, when mining coal deposits 
with continuous surface operations, is the presence of hard 
formations, namely cohesive materials of high mechanical 
strength in relation to the other materials of the series. Often 
it  is  difficult or impossible to excavate these hard inclusions
with BWEs (Kavouridis et al., 2008, Huss, 2014, Nan et al., 
2008). The existence of these hard rock formations with high 

cutting resistance result in stoppage, increased equipment 
wear, or even severe damage of the bucket wheel excavator 
(BWE), resulting to increased idle and break-down time, 
to  increased energy consumption, to lower production rate 
and finally to  increased mining cost. To prevent the BWEs
from digging into the hard formations a clear forward warning 
for the presence of  hard inclusions is required. An extensive 
comparison, ranking and evaluation via field testing of several
geophysical methods identified that, in the typical geologic

AUTOMATIC DETECTION OF UNMINEABLE INCLUSIONS WHILE 
BUCKET WHEEL EXCAVATOR DIGGING, USING ELECTROMAGNETIC 
(EM) SENSOR AND GPS
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magnetic fields. The instrument measurement involving the
Hs/Hp is converted to apparent conductivity, with σa in S/m, 
using the formula:  

    
    (1)

where ω is angular frequency, ω=2πf, f is the frequency in Hz, 
x is the Tx–Rx coil separation in m, μ0 is the magnetic perme-
ability of free space. Apparent resistivity is ρa=1/ σa in Ohmm. 
This formula is valid if the induction number B=x/δ <<1 where 
δ is the skin-depth. 

A simple way of calculating the instrument reading       
on  an arbitrary layered earth, as long as the intercoil spa-
cing is much less that the skin depth in all of the layers, 
is to add the contribution of each layer independently, 
weighted according to its conductivity and thickness 
(McNeill, 1980).

In 2D approximation, a conductivity model is discreti-
zed in N (i=1,2,3,…,N) layers and M (j=1,2,3,…,M) blocks 
within each layer in z and x direction, respectively. Each 
discrete cell has a constant value of conductivity. Each cell 
has dimensions dz and dx in z and x direction, respectively. 
Here we propose a method for estimating apparent conducti-
vities by adding the contribution of  each cell independently, 
weighted according to its conductivity. 

For coil separation of 1.89 m (which applies for the 
CMD2 instrument used in this study), low depth range 
mode and maximum depth of penetration 7 m, the cumu-
lative sensitivity weighting factor is shown in Figure 1a. 
The corresponding synthetic apparent resistivity (ρa=1/ 
σa) profiles for both the 1D and 2D approaches are shown 
in Figure 1b, over a conductive half space containing two 
non-conductive bodies.

environment of lignite mines employing BWEs, the electro-
magnetic methods (EM) are the most promising in detecting 
local features such boulders and hard layers (Overmeyer et al., 
2007, Galetakis et al., 2016). Thus if a continuously working 
geophysical sensor mounted on the BWE could scan the slope 
few cuts ahead of  the face and detect hard inclusions, digging 
into them could be avoided (Galetakis et al., 2016). Field tests 
of the electromagnetics geophysical method (using the CMD2 
sensor of GF Instruments) mounted on the BWE proved its 
effectiveness in opencast mines for detection of the ground 
ahead of the excavation face.

In this paper we present automated algorithms which 
predict the probability of occurrence of a hard rock formation 
at a specific position based on data received from an electro-
magnetic geophysical sensor mounted on the BWE boom. This 
sensor measures continuously the electrical conductivity of  the 
subsurface in the mine face. The probability of occurrence 
of  a hard rock formation is used as input to an expert system 
which estimates the risk of collision (between excavating 
buckets and hard rock formation) and if necessary, generates 
alarms.

First the modeling with EM and the overall system for data 
collection, processing and evaluation is briefly presented. Then
the developed algorithms for the automatic data evaluation are 
descripted and tested with synthetic and real data obtained from 
mine face geophysical survey. The obtained results are exami-
ned and the efficiency of the developed algorithms regarding
their ability to predict the occurrence of hard rock formations 
during mining by BWEs is discussed. 

MODELING ELECTROMAGNETIC DATA

The ground conductivity instruments use a phase sensitive 
measurement between the secondary (Hs) and the primary (Hp) 

(a) (b)

Fig. 1. (a) Low depth range 2D normalized cumulative sensitivity for intercoil separation 1.89 m and maximum depth of penetration 7 m. The instrument 
is  located at horizontal distance x=0 m, where maximum sensitivity values occur 

 (b) The synthetic apparent resistivity values over a 30 mx7 m model. Two resistive (200 Ohmm) bodies are buried at depth (top of bodies) 0.5 m from 
the surface within a homogeneous conductive (32 Ohmm) half space. These bodies generate characteristic high apparent resistivity anomalies.

Rys. 1. (a) Dwuwymiarowa znormalizowana czułość łączna niskiego zakresu głębokości dla separacji cewek 1,89 m i maksymalnej głębokości profilowania
7  m. Instrument znajduje się w odległości poziomej x = 0 m, gdzie występuje maksymalna czułość

.  (b) Syntetyczne pozorne wartości rezystywności w modelu 30 mx7 m. Dwa ciała rezystancyjne (200 Ohmm) są zakopane na głębokości 0,5 m 
od  powierzchni terenu w gruncie o jednorodnej przewodności (32 Ohmm). Ciała te generują charakterystyczne anomalie rezystywności
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SYSTEM FOR DATA COLLECTION 
AND  PROCESSING

The measuring and data processing system, as shown 
in  Figure 2, consists of three subsystems. The first subsystem
includes the measuring devices (EM sensor – CMD2, differen-
tial GPS and CCD camera) installed on the bucket wheel and 
the boom of BWE. The second subsystem is the EM control 
unit which collects, stores, transmits data and controls the ope-
ration of the EM sensor. GPS is connected and synchronized 
with EM sensor. Thus, the positioning and resistivity data from 
EM are transmitted simultaneously to control unit. The data, 
recorded in continuous mode at predefined sampling intervals,
are: time (UTC, Coordinated Universal Time), coordinates (La-

titude, Longitude, Altitude) and conductivity of the surveyed 
part of  the mine face by the EM instrument. Finally, the third 
subsystem is the developed software, installed on a fully rug-
ged laptop, hosted in the control cabin of the BWE, consisting 
of  four modules. The first module receives data form EM
control unit, performs the required pre-processing, and sends 
the corrected data to automated algorithm module. Automa-
ted algorithm module predicts the probability of occurrence 
of  a hard rock formation at a specific position, and sends this
information to  expert system module. Expert system estimates 
the risk of  collision (between excavating buckets and hard 
rock formation) and if necessary, generates alarms. The last 
module of the third subsystem is the visualization unit, which 
provides the machine operator with all required information 

Fig. 2. Mounting of EM and GPS sensors on the bucket wheel boom (above) and block diagram of the measuring and processing system installed 
on  the  bucket wheel excavator (below)

Rys. 2. Montaż czujników EM i GPS na wysięgniku z kołem urabiającym (wyżej) oraz schemat blokowy układu pomiarowo-technologicznego 
zainstalowanego na koparce (niżej)
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as well as  with real-time video for the visual inspection of the 
mine-face. The automatic algorithm for data evaluation, which 
is crucial for the overall system performance, is presented 
in  detail below. 

ALGORITHMS FOR THE AUTOMATIC 
EVALUATION OF THE COLLECTED EM DATA

Existing methods for EM data evaluation are mainly based 
on conductivity data inversion which in our case can provide 
information about the size and location of hard rock inclusions 
based on the estimation of the conductivity spatial distribution 
ahead of the front. These inversion methods though, are currently 
utilized as a post processing technique, since they are computa-
tionally expensive and require the complete dataset along one 
or more profiles. Thus we concentrated to data-driven modeling
and especially to statistical and to machine-learning methods. 
We have developed two different algorithms: a relatively simple 
one called Simple Mode, based on statistical process control 
and a more sophisticated one, called Advanced Mode, based 
on Position Prominence Index (PPI) and on Neural-Network 
based Pattern Recognition (NNPR). 

Simple Mode algorithm
The Simple Mode Hard Rock Detection (SMHRD) algorithm 

was developed to issue alarms when bucket wheel is   approaching 
a hard rock formation. SMHRD is based on  statistical process 
control and employs data collected during the current BWE cut. 
According to this approach, real-time CMD2 conductivity data are 
initially transformed to resistivity values and negative or extremely 
positive values are excluded (pre-processing). Then, SMHRD 
algorithm employs a moving average operator for a data win-

dow containing 21 resistivity values to  evaluate the Long Term 
Average (LTA) and standard deviation.  A narrower moving data 
window containing 3 measurements is  also used to check if the 
Short Term Average (STA) lies within pre-defined limits. In addi-
tion, the Short Term Average (STA) to Long Term Average (LTA) 
ratio is checked if it exceeds a pre-defined limit, as well. Based on
the above mentioned criteria, an alarm indicator is issued if the 
STA exceeds both standard deviation and STA/LTA ratio limits. 
Figure 3 shows schematically how SMHRD works.

Figure 4a shows an example of SMHRD algorithm applica-
tion on synthetic resistivity with 10% random added noise. The 
standard deviation and STA/LTA ratio limits are both set to  1.1. 
These best selected values were selected from performance eva-
luation. The above mentioned parameters resulted in 95% and 
85% success rate on finding the boulders in last BW cut, when
tested with 1 and 2 boulder models, respectively, while false 
alarms were 5% and 23%, respectively (Figure 4b). An  alarm 
is  considered successful if, at least one alarm position lies within 
the area of the shallowest hard rock horizontal extend, and false, 
if an alarm is issued in a position where no  hard rock exists 
or  it is located deeper. Since, the false alarms in  the scenario 
of  single boulder models is quite low (5%), the false alarm 

in  the case of 2 boulder models is attributed to the detection 
of  the deeper (and sometimes bigger) hard rock.

Another issue of SMHRD algorithm is the high success 
rate in deeper slice cuts (cut1-cut3 in Figure 4) than the current 
(cut4) resulting to early warning alerts. This is one of the most 
important reasons for the necessity of the development of more ad-
vanced techniques. Figure 5 shows a map of experimental apparent 
resistivity values acquired by moving CMD2 instrument mounted 
on a bucket truck against a slope, in June 2017 from South Field 

Fig. 3. Flowchart showing schematically the operation of Simple Mode algorithm used for the detection of hard rock formation during the operation 
of  a  BWE equipped with an EM geophysical sensor

Rys. 3. Schemat blokowy pokazujący zasadę działania algorytmu Simple Mode wykorzystywanego do wykrywania skał podczas urabiania koparką 
wielonaczyniową wyposażoną w czujnik geofizyczny EM
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Fig. 4: (a) Synthetic conductivity profile corresponding to the last BW cut before hitting the boulder, located at 0.2 m depth (the top of boulder) and 13 m
(center) of model. The sampling interval in horizontal direction is 0.1 m and the color scale corresponds to resistivity in Ohmm. (b) Performance 
evaluation of SMHRD process for selected data windows and threshold limits, using synthetic resistivity data and successive BWE cuts. Cut4 
correspond to the last BW cut before hitting on the boulder. Different BW cut depths (0.2, 0.6, 0.8, 1.0, 1.2 m) were examined in 100 different 
(randomly generated) 2 boulder models. The most successful parameter combinations, namely standard deviation and STA/LTA ratio limits, set to 1.1 
and are highlighted with crosses

Rys. 4: (a) Syntetyczny profil przewodności odpowiadający wybieraniu ostatniego pasma przed uderzeniem koła wielonaczyniowego w kamień, znajdującego
się na głębokości 0,2 m (górna krawędź wtrącenia skalnego) i na 13 m  modelu (w środku). Przedział próbkowania w kierunku poziomym wynosi 

 0,1 m, a skala kolorów odpowiada rezystywności w Ohmm. (b) Ocena wydajności procesu SMHRD dla wybranych okien danych i wartości 
progowych, z wykorzystaniem syntetycznych danych rezystywności i kolejnych wybieranych pasm. Cut4 odpowiada ostatniemu wybranemu pasmu 
przed uderzeniem w głaz. Różne głębokości skrawania (0,2, 0,6, 0,8, 1,0, 1,2 m) zbadano w 100 różnych (losowo wygenerowanych) modelach 
z dwoma wtrąceniami. Najtrafniejsze kombinacje parametrów, odchylenie standardowe i limity współczynnika STA / LTA, ustawione na 1,1 
i wyróżnione krzyżykami

(b)(a)

open pit mine, Ptolemaida, Greece. Hard rock inclusions in form 
of layers and lenses lied within the clays. The map is the product 
of  interpolation from apparent resistivity values acquired from the 
EM instrument CMD2 along the route marked with white crosses. 
High resistivity values correspond to an area where hard rock 
inclusion was observed. Separated data were extracted along 7 resi-
stivity profiles with 0.5 m spacing and then data for five successive
cuts (1-5) were derived to  be used for processing. Figure 5 shows 
an  example of Simple Mode Boulder Detection application along the 
4th cut of  the above mentioned experimental data. It shows an  area 
marked with warning alerts (both out of standard deviation and 
STA/LTA limits), at the positions where steep increase of  resistivity 
values is encountered.

Fig. 5. (Left) Apparent resistivity map deduced from experimental data acquired by the EM instrument CMD2.  High resistivity values correspond to a hard 
rock inclusion occurrence. (Right) Results of SMHRD algorithm applied on the 4th cut showing the generated warning alerts at the positions where 
steep increase of resistivity values is encountered

Rys. 5. (Po lewej) Mapa rezystywności pozornej opracowana na podstawie danych eksperymentalnych uzyskanych przez instrument EM CMD2. Wysokie 
wartości rezystywności odpowiadają wystąpieniu wtrącenia skalnego. (Po prawej) Wyniki algorytmu SMHRD zastosowane podczas wybierania 
ostatniego pasma, pokazujące wygenerowane ostrzeżenia w miejscach, w których napotkano gwałtowny wzrost wartości rezystywności

(a) (b)

Advanced Mode operation algorithms
Advanced Mode operation of the automated algorithm for 

real-time data evaluation requires the obtained data to  be  or-
ganized in profiles, resulting from the slewing operation of  the
bucket wheel. Since CMD2 instrument is mounted next to the 
bucket wheel at a certain distance (approximately 4 m), its 
trajectory is cyclic as it follows the movement of the  bucket 
wheel. To calculate the coordinates (X, Y, Z) of the individu-
als trajectories of CMD2 corresponding to slewing operation 
of  the bucket wheel we have modeled the excavation of a block 
by a BWE (Figure 6) when terrace cutting is applied. Figure 
6  shows the X, Y and elevation coordinates from CMD2 syn-
thetic instrument trajectories. Synthetic apparent resistivity 



GÓRNICTWO ODKRYWKOWE nr 4/2018

12

(a)
Fig. 6. (a) EM sensor (CMD2) trajectories in X-Y coordinates (UTM) during the excavation of a block by terrace cutting. (b) EM sensor (CMD2) elevations 

during the excavation of a block by terrace cutting
Rys. 6. (a) Trajektorie czujnika EM (CMD2) we współrzędnych X-Y (UTM) podczas wybierania kolejnych pasm w poszczególnych stopniach zabierki 
 (b) Położenie czujnika EM (CMD2) podczas wybierania kolejnych pasm w poszczególnych stopniach zabierki

Fig. 7. Synthetic apparent resistivity data created along orthogonal models 
Rys. 7. Dane syntetyczne dotyczące rezystywności pozornej utworzone 

za  pomocą modeli ortogonalnych.

data created along orthogonal synthetic models were registered 
along the modeled bucket wheel trajectories (Figure 7). Subse-
quently, taking into account the above mentioned excavation 
process we  organized the synthetic data in blocks, layers and 
cuts in order to form the resistivity profiles which are essential
in  Advanced Mode operation.

Hard rock inclusions increase the apparent resistivity wi-
thin the EM profiles. Thus, local maxima detection is required
in  order to locate possible hard rock inclusions within the sur-
rounding media. Within the Advanced Mode operation we  have 
utilized two different algorithms for the detection of  the hard 
rock formations which are described below.

Position Prominence Index
We utilize an algorithm for the detection of the most 

prominent peaks. Initially, we know that peaks define a subset 
of  the local maxima, since several local maxima may be closely 
located and the values in between do not change dramatically. 
In such case, only the higher local maximum is considered 
as peak. The algorithm is very simple and exhibits the above 
mentioned qualitative description. It is adaptive regarding the 
number of  required prominent peaks. The first peak is the
global maximum. The next ones are recursively obtained from 
the immediately previous one. For each local maximum, the 
path to the previous peak is traced on the data. The prominence 

of a local maximum is the difference between the maximum 
value and the minimum value along the path. The next pro-
minent peak is the one that is characterized by the maximum 
prominence. It is clear that this algorithm will return maxima 
with lower prominence values, as the number of required peaks 
increases. In practice this algorithm seems to agree with the 
subjective picking without increasing the complexity by adding 
extra parameters.

Since the excavation using a bucket-wheel excavator 
(BWE) is a repeated process along profiles, the high resisti-
vity values caused by hard rock inclusions are anticipated: 1) 
at  the same locations along profiles from the same front and
2) to  be  increased as the EM instrument (attached to BW) 
approaches the inclusion. The Position Prominence Index (PPI) 
is introduced to take into account the above mentioned criteria. 
Namely, the PPI value is increased in a specific position when
resistivity peaks are detected repetitively and their values are 
increasing. The PPI of a current BWE pass is defined at po-
sitions of local resistivity maxima and depends on the value 
of  the peak, the Number of Local Maxima along a pass and the 
proximity of the prominent peak in successive passes. If  PR 
is  the Prominence Rank, which depends on the value of the 
peak, and NLM the Number of Local Maxima met along this 
pass. Then, PPI is defined as:

    (2)

The current PPIn+1 is subjected to modifications (bonus
or  punishments) according to:

a) PPIn+1 = (PPIn + PPIn+1)
2 – PPIn when local resistivity 

maxima from successive BW passes are observed at the same 
position or PPIn+1 = sqrt(PPIn + PPIn+1) when local resistivity 
maxima from successive BW passes are observed at neighboring 
positions

b) PPIn+1 = PPIn+1 * RESn+1 / RESn for increasing or decre-
asing resistivity values at maxima from successive BW passes 
PPIn (B-W pass n) decreases according to:

a) PPIn = PPIn / 2 
if PPIn+1 (BW pass n+1) < average(PPIn+1) + 1 x stan-

dard_deviation(PPIn+1), namely the current PPIn+1 value is not 
among the higher values

b) PPIn = PPIn / 4
if PPIn+1 (BW pass n+1) ≤ average(PPIn+1), namely the 
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current PPIn+1 value is below current average PPI values.
Additional adjustments are:
• PPIn is set to zero at positions where PPIn+1 is zero
• Following the previous adjustment, PPI of pass n+1 

is updated to:
PPIn+1 = PPIn + PPIn+1
for the next iteration where data from the pass n+2 is  in-

volved.
PPI is an excellent position boulder detector technique. 

However, it suffers from two main drawbacks: a) it is sensitive 
to measurement position errors and b) there are difficulties
in  establishing PPI threshold, since PPI is affected by the 
number of data points in profiles. However, it is anticipated
to  contribute positively in the expert system, by increasing the 
success rate of hard inclusion detection.

A model of a conductive half space containing two non-con-
ductive bodies was created and the apparent resistivity values 
corresponding to coil separation of 1.89 m are shown in  Figure 
8. Random noise equal to the 10% of half-space resistivity 
(32 Ohmm) was added to the model resistivity values. The 
resistive bodies are successively placed at shallower positions 
simulating the excavation of 0.5 m overburden at  each pass 
of  the B-W excavator. For the estimation of  the PPI profile,
we examine synthetic apparent resistivities. PPI values incre-
ase as the excavation front approaches the resistive bodies and 
thus, the geophysical instrument and the B-W excavator come 
closer to  them. The highest PPI values are observed in  Figure 
8 at  the positions x=5.5 m and x=22 m, where the  centre 
of  resistive bodies are located. The PPI values at the rest po-
sitions are suppressed due to the randomness of  the apparent 
resistivity noise

Automatic evaluation of EM profiles based
on  Artificial Neural Networks for Pattern Recognition
The developed neural network model (Neural Network for 

Resistivity Pattern Recognition or NNRPR) is a feedforward 
NN with a hidden layer with 10 neurons that uses resistivity 

(a) (b)
Fig. 8. (a) The apparent resistivity values as estimated by numerical approach over a 30 m x 7 m model. Two resistive (200 Ohmm) bodies are located at the 

surface (top of the bodies) within a homogeneous conductive (32 Ohmm) half space. (b) Apparent resistivity profiles corresponding to the fourth and
fifth passes of B-W. Prominent maxima are detected in data profile positions x=5.5 m and x=22 m and thus, PPI (black line) is high there after five
passes

Rys. 8. (a) Wartości pozornej rezystywności oszacowane metodą numeryczną w modelu 30 m x 7 m. Dwa ciała rezystancyjne (200 Ohmm) znajdują 
się  na  powierzchni o jednorodnej przewodności (32 Ohmm). (b) Widoczne profile rezystywności odpowiadają czwartemu i piątemu wybieranemu 
pasmu. Wyróżniające się maksima są wykrywane w pozycjach profilu danych x = 5,5 m i x = 22 m, wartość PPI (czarna linia) jest bardzo wysoka
po  wybraniu piątego pasma w analizowanym stopniu zabierki

and positioning data from n successive cuts to estimate the pro-
bability of occurrence of a hard rock formation in the next cut 
(n+1) at a specific position xo, yo, zo, as shown in Figure 9. The 
prediction is based on the examination of local changes of  re-
sistivity profiles created by the EM sensor (CMD2) mounted
on the bucket-wheel during the excavation process. In terrace 
cutting, (Fig. 9), as bucket wheel is approaching the hard rock 
formations, the resistivity values are increasing due to  the pre-
sence of the hard rock formation. These patterns of  resistivity 
profiles indicate the presence of a hard rock formation as shown 
in Figure 9. The developed neural network model NNRPR is 
capable, after training, to recognize these patterns (changes in 
the resistivity profiles) and to relate them with the position of
the hard rock formation. 

NNRPR examines local changes of the resistivity profiles
of the n recent successive cuttings by using a moving window 
including k resistivity measurements from each cut. In addi-
tion, NNRPR uses as input the distance among the examined 
successive local resistivity profiles. This distance coincides
with the cutting advance of the BWE at the position xo, yo, zo. 
Thus, the number of the inputs of NNRPR is kxn+1, while 
the output of  NNRPR is the probability of the occurrence 
of  a hard rock formation at position xo, yo, zo. Several different 
values of  n  and  k were examined during training and testing 
of NNRPR and optimal values were determined to be,  n=3 
and k=5.

NNRPR was trained by using a large set of synthetic data 
(178200 cases). Synthetic data simulate various geological 
and mining conditions which cannot be observed in a specific
mine during a certain time period. With synthetic data hard 
rock formations of different size, shape, number and position 
can be  effectively represented by creating the respective digital 
models. The random variations occurring in real data were taken 
into account by adding noise to synthetic data.

Synthetic data were then randomly divided into three sets: 
the training (70% of the original data), the validation (15%) and 
the testing (15%) set. Validation data were used to validate that 
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the network is generalizing and to stop training before overfit-
ting (early stopping technique), while testing data were used 
as  a completely independent test of network generalization. 

The development, training and testing of NNRPR was 
performed within the Matlab programming environment. The 
confusion matrix obtained after NNRPR training is shown 
in  Figure 10. It shows the number and the percentages of correct 
and false predictions, where class 1 symbolizes the occurrence 
of hard rock formation while class 0 symbolizes the nonexi-
stence. These percentages are considered acceptable. Figure 10 
shows the obtained Receiver-Operator-Curve (ROC) as well, 
which indicates how the false alarms rate changes as the rate 
of successful prediction increases. From ROC it is obvious that 
the achievement of higher successful prediction rate (e.g. 0.98) 

Fig. 9. Schematic diagram showing: (Top) Terrace cutting by BWE. 
(Bottom) Successive resistivity profiles obtained during terrace
cutting (3 cuts) and use of moving window to examine local changes 
in resistivity profiles as BW approaches the hard rock

Rys. 9. Schemat przedstawiający: (Górny) Wybieranie pasm 
w poszczególnych stopniach zabierki. (Dół) Kolejne profile 
rezystywności uzyskane podczas wybieranych kolejno pasm (3 
pasma) i wykorzystanie ,,ruchomego okna” do badania lokalnych 
zmian w profilach rezystywności, gdy koło urabiające zbliża
się  do  nieurabialnej skały

Fig. 10. (A) Confusion matrices for all data showing the number and 
the percentages of correct and false predictions (Class 0=Non-
existence of a hard rock formation, Class 1=Existence of a hard 
rock formation). (B) The Receiver-Operator-Curve, or ROC, 
indicates how the false alarms rate increases as the rate of successful 
prediction increases

Rys. 10. (A Macierze pomyłek dla wszystkich danych z wyszczególnieniem 
liczb i wartości procentowych prognoz poprawnych i fałszywych 
(Klasa 0 = Brak istnienia twardej skały, Klasa 1 = Występowanie 
twardej skały). (B) Krzywa ROC wskazuje, w jaki sposób wzrasta 
liczba fałszywych alarmów wraz ze   wzrastem wskaźnika 
pomyślnej prognozy

The trained NNRPR was then used to predict the occurrence 
of hard rock formations in real data collected with EM sensor 
(CMD2). These data was collected at the mine face of  sector 
7 of the South Field Mine of PPC. In the upper middle part 
of  the mine face a hard rock formation was observed. The 
measurement points, as well as, the constructed resistivity map 
are shown earlier in Figure 5. The presence of the hard rock 
formation is clearly shown by the high resistivity values. Seven 
resistivity profiles with 0.5m spacing were created and then data
for five successive cuts (1-5) were derived to be used as input to
NNRPR to predict the probability of the occurrence of the hard 
rock formation. Predicted probabilities for each cut are shown 
in Figure 11. NNRPR has predicted the probability for a hard 

rock occurrence at cut 5 at the horizontal position of  7  m to the 
value of 0.92. For the other cuts (1-4) the predicted probability 
was very low (nearly zero).

CONCLUSIONS

We developed algorithms for automatic processing of data 
obtained from the geophysical sensor (electromagnetic conduc-
tivity-CMD2) and positioning system. First the overall system 
for data collection, pre-processing and evaluation was designed 
(block diagram). Subsequently, existing evaluation methods and 
algorithms were examined and the creation of the synthetic data 
required for the first phase of the development was completed.

A

B
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Fig.  11. Profiles of the probability for a hard rock occurrence for the examined five successive cuts (1-5)
Rys. 11. Profile prawdopodobieństwa wystąpienia twardej skały podczas wybierania kolejnych pasm w stopniu zabierki (1-5)

Several numerical, statistical and neural network models were 
created and tested with synthetic data as well as with data 
collected from the field test carried out in the coal-mines. Two
different evaluation approaches were investigated, a relative 
simple one (Simple Mode) based on statistical process control 
and a more sophisticated one (Advanced Mode), based on PPI 
(Position Prominence Index) and on NNPR (Neural-Network 
based Pattern Recognition). The respective algorithms (softwa-
re) were developed within Matlab programming environment. 
Both methods (simple and advanced) were tested extensively 
first with synthetic data and then with real data, collected using
bucket truck as well as, with the EM sensor mounted on  the 
bucket wheel of an excavator. Both in synthetic and real data, 
Advanced Mode provided more accurate results than Simple 
one in automatic detection of unmineable hard rock inclusions. 
However Advanced Mode algorithms are sensitive in  posi-

tioning accuracy and require EM data from at least three suc-
cessive cuts of the bucket wheel excavator sorted adequately. 
These requirements limit the use of Advanced Mode algorithms 
in  real-time applications.  
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