Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Many authors have highlighted the importance of physical assets maintenance management in relation to resilience engineering, especially for systems operating under significant uncertainty. Thus, the authors presented a new approach to system maintenance based on resilience concept implementation. They introduced Maintenance Support Potentials (MSP) as a measure of an organization's maintenance support capacity. Moreover, based on the MSP definition, they developed a fuzzy-based organization's maintenance support potential level assessment method. The proposed approach takes into account two main MSP parameters – potential readiness level and process regency. It followed four main steps, including organization's MSP identification/evaluation, MSP weights assessment, Maintenance Support Capacity assessment, and final reasoning. A case study of a global manufacturer from the automotive industry is presented to illustrate the method's applicability. The authors also indicated further research directions to optimize the maintenance strategy based on Resilience-Based Maintenance concept.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
294--307
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
- WSB University, ul. Zygmunta Cieplaka 1c, 41-300 Dabrowa Gornicza, Poland
- Faculty of Mechanical Engineering, Department of Operation and Maintenance of Technical Systems, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
Bibliografia
- 1. Bargiela A, Pedrycz W. Granular Computing. Kluwer Academic Publishers: 2002, https://doi.org/10.1007/978-1-4615-1033-8.
- 2. Bergstrom J, van Winsen R, Henriqson E. On the rationale of resilience in the domain of safety: a literature review. Reliability Engineering and System Safety 2015; 141: 131-141, https://doi.org/10.1016/j.ress.2015.03.008.
- 3. Buckley JJ. Fuzzy hierarchical analysis. Fuzzy Sets and Systems 1985; 17(3): 233-247, https://doi.org/10.1016/0165-0114(85)90090-9.
- 4. Bukowski L. Reliable, Secure and Resilient Logistics Networks. Delivering products in a risky environment. Springer Nature Switzerland AG: 2019, https://doi.org/10.1007/978-3-030-00850-5.
- 5. Bukowski L, Werbińska-Wojciechowska S. Resilience based maintenance: a conceptual approach. In: Baraldi P, Di Maio F, Zio E. (eds): Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference, Research Publishing, Singapore: 2020: 3782-3789. https://doi.org/10.3850/978-981-14-8593-0.
- 6. De Almeida AT, Cavalcante CAV, Alencar MH, Ferreira RJP, De Almeida-Filho AT, Garcez TV. Multicriteria and multiobjective models for risk, reliability and maintenance decision analysis. Springer International Publishing Switzerland: 2015, https://doi.org/10.1007/978-3-319-17969-8_12.
- 7. Dubois D, Prade H. (Eds.) Fuzzy Information Engineering: a Guided Tour of Applications. John Wiley and Sons: 1996.
- 8. Eusgeld I, Freiling F C. Introduction to Dependability Metrics. In: Eusgeld I, Freiling F C, Reussner R. (eds.) Dependability Metrics. Lecture Notes in Computer Science, vol 4909. Springer, Berlin, Heidelberg: 2008: 1-4, https://doi.org/10.1007/978-3-540-68947-8_1.
- 9. Fasanghari M, Roudsari FH. The fuzzy evaluation of e-commerce customer satisfaction. World Applied Sciences Journal 2008; 4(2): 164-168, https://doi.org/10.1109/ISECS.2008.207.
- 10. Filev D, Yager RR. Essentials of Fuzzy Modeling and Control. Wiley-Interscience: 1994.
- 11. Gandhare BS, Akarte M. Maintenance strategy selection. In: Proc. of Ninth AIMS International Conference on Management, January 1-4, 2012: 1330-1336.
- 12. Hayes J. Use of safety barriers in operational safety decision making. Safety Science 2012; 50: 424-432, https://doi.org/10.1016/j.ssci.2011.10.002.
- 13. Hollnagel E. Safety-II in Practice. Developing the Resilience Potentials. Routledge, Taylor & Francis Group, London and New York: 2018, https://doi.org/10.4324/9781315201023.
- 14. Hollnagel E. Risk + barriers - safety? Safety Science 2008; 46: 221-229, https://doi.org/10.1016/j.ssci.2007.06.028.
- 15. Hsu H-S, Chen Ch-T. Aggregation of fuzzy opinions under group decision making. Fuzzy Sets and Systems 1996; 79(3): 279-285, https://doi.org/10.1016/0165-0114(95)00185-9.
- 16. Huang H Z. Structural reliability analysis using fuzzy sets theory. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012; 14 (4):284-294.
- 17. ISO 31000:2018 Risk management - Guidelines. International Organization for Standardization, Geneva.
- 18. Jacyna M, Semenov I. Models of vehicle service system supply under information uncertainty. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22 (4): 694-704, https://doi.org/10.17531/ein.2020.4.13.
- 19. Jain P, Mentzer R, Mannan MS. Resilience metrics for improved process-risk decision making: Survey, analysis and application. Safety Science 2018; 108: 13-28, https://doi.org/10.1016/j.ssci.2018.04.012.
- 20. Jain P, Pistikopoulos EN, Mannan MS. Process resilience analysis based on data-driven maintenance optimization: Application to cooling tower operations. Computers and Chemical Engineering 2019; 121: 27-45, https://doi.org/10.1016/j.compchemeng.2018.10.019.
- 21. Jamshidi M, Titli A, Zadeh LA, Boverie S. (Eds.) Applications of Fuzzy Logic-towards High Machine Intelligence Quotient Systems. Environmental and Intelligent Manufacturing Systems Series, vol. 9, Prentice Hall, Upper Saddle River, NJ: 1997.
- 22. Klir G J, Yuan B. Fuzzy sets and fuzzy logic: theory and applications. Upper Saddle River, NJ: Prentice Hall, PTR: 1995.
- 23. Loska A. Remarks about modelling of maintenance processes with the use of scenario techniques. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012; 14 (2): 92-98.
- 24. Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 1975; 7: 1-13, https://doi.org/10.1016/S0020-7373(75)80002-2.
- 25. Misra KB. Maintenance Engineering and Maintainability: An Introduction. In: Misra KB (eds): Handbook of Performability Engineering. Springer, London: 2008: 755-772, https://doi.org/10.1007/978-1-84800-131-2_46.
- 26. Moerman J-J, Braaksma J, van Dongen L. Resilient performance in maintenance operations: managing unexpected failures. In EurOMA 2017 conference proceedings. 24th International Annual EurOMA Conference 2017, Edinburgh, United Kingdom, 1/07/17, 1-10.
- 27. Mottahedi A, Ataei M. Fuzzy fault tree analysis for coal burst occurrence probability in underground coal mining. Tunnelling and Underground Space Technology 2019; 83: 165-174, https://doi.org/10.1016/j.tust.2018.09.029.
- 28. Nadaban S, Dzitac S, Dzitac I. Fuzzy TOPSIS: A general view. Proceedia Computer Science 2016; 91: 823-831, https://doi.org/10.1016/j.procs.2016.07.088.
- 29. Okoh P, Haugen S. Improving the robustness and resilience properties of maintenance. Process Safety and Environmental Protection 2015; 94: 212-226, https://doi.org/10.1016/j.psep.2014.06.014.
- 30. Pedrycz W, Gomide F. Introduction to Fuzzy Sets. MIT Press, Cambridge, MA: 1998, https://doi.org/10.7551/mitpress/3926.001.0001.
- 31. PN-EN 13306:2010 Maintenance - Maintenance terminology. European Committee for Standardization, Bruxelles.
- 32. PN-EN 17007:2018-02 Maintenance process and associated indicators. European Committee for Standardization, Bruxelles.
- 33. Provan DJ, Woods DD, Dekker SWA, Rae AJ. Safety II professionals: How resilience engineering can transform safety practice. Reliability Engineering and System Safety 2020; 195: 1-14, https://doi.org/10.1016/j.ress.2019.106740.
- 34. Rau C-G, Necas P, Boscoianu M. Review of maintainability and maintenance optimization methods for aviation engineering systems. Science and Military 2011; 2: 54-60.
- 35. Ross T J. Fuzzy Logic with Engineering Applications. John Wiley and Sons: 2004.
- 36. Sun Ch-Ch. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Systems with Applications 2010; 37: 7745-7754, https://doi.org/10.1016/j.eswa.2010.04.066.
- 37. Talon A, Curt C. Selection of appropriate defuzzification methods: application to the assessment of dam performance. Expert Systems with Applications 2017; 70: 160-174, https://doi.org/10.1016/j.eswa.2016.09.004.
- 38. Tripathy DP, Ala CK. Risk assessment in underground coal mines using fuzzy logic in the presence of uncertainty. Journal of The Institution of Engineers (India): Series D 2018; 99(1): 157-163, https://doi.org/10.1007/s40033-018-0154-7.
- 39. Vaníček J, Vrana I, Aly S. Fuzzy aggregation and averaging for group decision making: A generalization and survey. Knowledge Based Systems 2009; 22: 79-84, https://doi.org/10.1016/j.knosys.2008.07.002.
- 40. Verma S, Chaudhri S. Integration of fuzzy reasoning approach (FRA) and fuzzy analytic hierarchy process (FAHP) for risk assessment in mining industry. Journal of Industrial Engineering and Management 2014; 7: 1347-1367, https://doi.org/10.3926/jiem.948.
- 41. Wang H, Duan F, Ma J. Reliability analysis of complex uncertainty multi-state system based on Bayesian network. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21 (3): 419-429, https://doi.org/10.17531/ein.2019.3.8.
- 42. Werbińska-Wojciechowska S. Technical system maintenance. Delay-Time-Based Modelling. Springer Nature Switzerland AG: 2019, https://doi.org/10.1007/978-3-030-10788-8.
- 43. Yan S, MA B, Wang X, Chen J, Zheng C. Maintenance policy for oil-lubricated systems with oil analysis data. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22 (3): 455-464, https://doi.org/10.17531/ein.2020.3.8.
- 44. Yazdi M, Nikfar F, Nasrabadi M. Failure probability analysis by employing fuzzy fault tree analysis. International Journal of System Assurance Engineering and Management 2017; 8: 1177-1193, https://doi.org/10.1007/s13198-017-0583-y.
- 45. Yen J, Langari R. Fuzzy Logic: Intelligence, Control and Information. Prentice Hall, Berlin: 1998.
- 46. You L, Zhang J, Li Q, Ye N. Structural reliability analysis based on fuzzy random uncertainty. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21 (4): 599-609, https://doi.org/10.17531/ein.2019.4.9.
- 47. Zadeh L A. Toward a generalized theory of uncertainty (GTU) - an outline. Information Sciences 2005; 172: 1-40, https://doi.org/10.1016/j.ins.2005.01.017.
- 48. Zadeh L A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Systems 1978; 1: 3-28, https://doi.org/10.1016/S0165-0114(99)80004-9.
- 49. Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man and Cybernetics SMC-3; 1973: 28-44, https://doi.org/10.1109/TSMC.1973.5408575.
- 50. Zadeh L A. Fuzzy Sets. Information and Control 1965; 8: 338-353, https://doi.org/10.1016/S0019-9958(65)90241-X.
- 51. Zheng J H. A fuzzy TOPSIS approach based to evaluate the transportation mode selection: an experience in a suburban university. Advances in Transportation Studies, Special Issue 2015; 1: 23-34, https://doi.org/10.4399/978885488881403.
- 52. Zhiyong G, Jiwu L, Rongxi W. Prognostics uncertainty reduction by right-time prediction of remaining useful life based on hidden Markov model and proportional hazard model. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2021; 23 (1): 154-164, https://doi.org/10.17531/ein.2021.1.16.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db132737-2f94-474d-bf99-fb163f904fa6