PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the cumulated dose for external beam irradiation of prostate cancer patients with 3D-CRT technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the Warsaw Medical Physics Meeting 2014 (2014 ; 15-17 May ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
Nowadays in radiotherapy, much effort is taken to minimize the irradiated volume and consequently minimize doses to healthy tissues. In our work, we tested the hypothesis that the mean dose distribution calculated from a few fi rst fractions can serve as prediction of the cumulated dose distribution, representing the whole treatment. We made our tests for 25 prostate cancer patients treated with three orthogonal fi elds technique. We did a comparison of dose distribution calculated as a sum of dose distribution from each fraction with a dose distribution calculated with isocenter shifted for a mean setup error from a few fi rst fractions. The cumulative dose distribution and predicted dose distributions are similar in terms of gamma (3 mm 3%) analysis, under condition that we know setup error from seven fi rst fractions. We showed that the dose distribution calculated for the original plan with the isocenter shifted to the point, defi ned as the original isocenter corrected of the mean setup error estimated from the fi rst seven fractions supports our hypothesis, i.e. can serve as a prediction for cumulative dose distribution.
Czasopismo
Rocznik
Strony
15--18
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
  • Department of Medical Physics, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, 15B Wawelska Str., 02-034 Warsaw, Poland
  • Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Str., 02-093 Warsaw, Poland
  • Department of Medical Physics, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, 15B Wawelska Str., 02-034 Warsaw, Poland
autor
  • Department of Medical Physics, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, 15B Wawelska Str., 02-034 Warsaw, Poland
autor
  • Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Str., 02-093 Warsaw, Poland
  • Department of Medical Physics, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, 15B Wawelska Str., 02-034 Warsaw, Poland
  • Department of Medical Physics, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, 15B Wawelska Str., 02-034 Warsaw, Poland
Bibliografia
  • 1. International Commission on Radiation Units and Measurements. (1999). Prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50). Bethesda, Maryland: ICRU. (ICRU Report 62).
  • 2. van Herk, M., Remeijer, P., Rasch, C., & Lebesque, J. V. (2000). The probability of correct target dosage: Dose-population histograms for deriving treatment margins in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 47(4), 1121–1135. DOI: 10.1016/S0360-3016(00)00518-6.
  • 3. Stroom, J. C., de Boer, H. C. J., Huizinga, H., & Visser, A. G. (1999). Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int. J. Radiat. Oncol. Biol. Phys., 43(4), 905–919. DOI: 10.1016/S0360-3016(98)00468-4.
  • 4. Rassiah-Szegedi, P., Wang, B., Szegedi, M., Tward, J., Zhao, H., Huang, Y. J., Sarkar, V., Shrieve, D., & Salter, B. (2011). Individualized margins for prostate patients using a wireless localization and tracking system. J. Appl. Clin. Med. Phys., 12(3), 194–204. http://dx.doi.org/10.1120/jacmp.v12i3.3516.
  • 5. Cheung, P., Sixel, K., Morton, G., Loblaw, D. A., Tirona, R., Pang, G., Choo, R., Szumacher, E., Deboer, G., & Pignol, J. P. (2005). Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys., 62(2), 418–425. DOI: 10.1016/j.ijrobp.2004.09.051.
  • 6. Adamczyk, M., Piotrowski, T., Adamiak, E., & Malicki, J. (2014). Dosimetric consequences of prostate--based couch shifts on the precision of dose delivery during simultaneous IMRT irradiation of the prostate, seminal vesicles and pelvic lymph nodes. Phys. Medica, 30(2), 228–233.
  • 7. Piziorska, M., Kukołowicz, P., Zawadzka, A., Pilichowska, M., & Peczkowski, P. (2012). Adaptive off-line protocol for prostate external radiotherapy with cone beam computer tomography. Strahlentherapie Onkol., 188(11), 1003–1009.
  • 8. Depuydt, T., Van Esch, A., & Huyskens, P. (2002). A quantitative evaluation of IMRT dose distributions: refi nement and clinical assessment of the gamma evaluation. Radiother. Oncol., 62, 309–319. DOI:10.1016/S0167-8140(01)00497-2.
  • 9. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc., 47(260), 583–621. DOI: 10.1080/01621459.1952.10 483441.
  • 10. Smirnov, N. V. (1994). Approximate distribution laws for random variables, constructed from empirical data. Uspekhi Mat. Nauk, 10, 179–206. (in Russian).
  • 11. Brahme, A. (1984). Dosimetric precision requirements in radiation therapy. Acta Radiol. Oncol. Radiat. Phys. Biol., 23(5), 379–391.
  • 12. Lips, I., van der Heide, U., Kotte, A., van Vulpen, M., & Bel, A. (2009). Effect of translational and rotational errors on complex dose distributions with off-line and on-line position verifi cation. Int. J. Radiat. Oncol. Biol. Phys., 74(5), 1600–1608. DOI: 10.1016/j.ijrobp.2009.02.056.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db0e9395-c65a-43df-9c89-57f4afe75bba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.