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Abstract

In the present paper we derive sufficient conditions for the linear differential equa-

tion (r(t)y′(t))′ + p(t)y(t) = 0 to be either oscillatory or non-oscillatory on the left

and eventually on the right. Some estimations of count of zero points for solutions

to considered equation on an interval are also presented.

1. Introduction

We consider the linear differential equation

(r(t)y′(t))′ + p(t)y(t) = 0 (1)

on the interval (a, b), where −∞ ≤ a < b ≤ ∞. The following conditions are
assumed to hold throughout the paper:

(i) r ∈ C(a, b), r(t) > 0;

(ii) p ∈ C(a, b), p(t) ≥ 0, p(t) is not identically zero in any right neighbor-
hood of a and in any left neighborhood of b.

We call a function u a solution of the equation (1) on the interval (a, b)
if u ∈ C1(a, b), ru′ ∈ C1(a, b) and it satisfies the equation (1) for t ∈ (a, b).

In the sequel we shall restrict our attention to non-trivial solutions of
the equations considered. Such a solution u is called oscillatory on the left
if there exists a decreasing sequence {tn}∞n=1 of the points tn ∈ (a, b) with
the property limn→∞ tn = a and u(tn) = 0 for n = 1, 2, 3, . . . . By analogy,
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a solution u is called oscillatory on the right if there exists an increasing
sequence {tn}∞n=1 of the points tn ∈ (a, b) with the property limn→∞ tn = b
and u(tn) = 0 for n = 1, 2, 3, . . . . An equation is said to be oscillatory on
the left, eventually on the right, if all its solutions are oscillatory on the left,
eventually on the right.

It is well known that second order differential equations are very im-
portant in applications. Numerous phenomena in physical, biological, and
engineering sciences can be described by second order differential equations.
Moreover, as we can see e.g. in [1], results on second order differential equa-
tions play important role in the study of higher order differential equations.

C’est ascavoir that in the study of the oscillatory character of solutions
to differential equations we usually consider differential equation on an in-
terval of the form [a,∞) for some real number a (see e.g. [1], [2], [3], [4] and
references cited therein). In such a case, a solution u of studied equation is
called oscillatory if there exists a sequence {tn}∞n=1 of the points tn ∈ [a,∞)
such that limn→∞ tn = ∞ and u(tn) = 0 for n = 1, 2, 3, . . . . It is clear that
in our terminology such a solution is oscillatory on the right, and moreover
in such a special case when b = ∞.

The aim of this paper is to derive sufficient conditions for the linear
differential equation (1) to be either oscillatory or non-oscillatory on the left
and eventually on the right and give estimates of count of zero points for
solutions to the differential equation (1) on a subinterval of (a, b).

2. Main results

First we pay attention to an oscillation on the left.
We put

R1(t) =

∫ t

a

ds

r(s)
for t ∈ (a, b). (2)

Theorem 1. Suppose that limt→a+ R1(t) = 0. Then equation (1) is oscil-
latory on the left if

lim inf
t→a+

R2
1(t)r(t)p(t) > 1/4 (3)

and it is non-oscillatory on the left if

lim sup
t→a+

R2
1(t)r(t)p(t) < 1/4. (4)

P r o o f. One can verified directly that the linear independent solutions of
the differential equation (generalized Euler equation)

(r(t)u′(t))′ +
α

r(t)R2
1(t)

u(t) = 0, t ∈ (a, b) (5)
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are the functions

u1(t) = [R1(t)]
1

2
+
√

1

4
−α
, u2(t) = [R1(t)]

1

2
−
√

1

4
−α if α <

1

4
,

u1(t) = [R1(t)]
1

2 , u2(t) = [R1(t)]
1

2 lnR1(t) if α =
1

4

and

u1(t) = [R1(t)]
1

2 cos
{

√

α− 1/4 lnR1(t)
}

,

u2(t) = [R1(t)]
1

2 sin
{

√

α− 1/4 lnR1(t)
}

if α >
1

4
. (6)

Note that equation (5) was solved in [4]. However, we see that it is oscillatory
on the left in the case α > 1/4, since lnR1(t) → −∞ as t→ a+, and it is non-
oscillatory on the left in the case α ≤ 1/4. Now, using the Sturm comparison
theorem, it is clear that equation (1) is oscillatory on the left if for some
t1 ∈ (a, b] and some α > 1/4 the inequality

p(t) ≥ α

r(t)R2
1(t)

for t ∈ (a, t1) (7)

is satisfied. On the other hand, equation (1) is non-oscillatory on the left if
for some t2 ∈ (a, b] and some α ≤ 1/4 the inequality

p(t) ≤ α

r(t)R2
1(t)

for t ∈ (a, t2) (8)

is satisfied.
We use the designation β = lim inft→a+ R

2
1(t)r(t)p(t).

Now the assumption (3) says that for every ε > 0, i.e. also for such ε
that µ = β−ε > 1/4, there exists t1 ∈ (a, b) such that for t ∈ (a, t1) we have

R2
1(t)r(t)p(t) ≥ µ

which means (by (7)) that the equation (1) is oscillatory on the left.
We use the designation γ = lim supt→a+ R

2
1(t)r(t)p(t).

In a like manner, the assumption (4) says that for every ε > 0, i.e.
also for such ε that ν = γ + ε < 1/4, there exists t2 ∈ (a, b) such that for
t ∈ (a, t2) we have

R2
1(t)r(t)p(t) ≤ ν

which means (by (8)) that equation (1) is non-oscillatory on the left and the
proof is complete.

�
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Now we pay attention to the problem of oscillation on the right.
For that purpose we put

R2(t) =

∫ b

t

ds

r(s)
for t ∈ (a, b). (9)

Theorem 2. Suppose that limt→b− R2(t) = 0. Then equation (1) is oscilla-
tory on the right if

lim inf
t→b−

R2
2(t)r(t)p(t) > 1/4 (10)

and it is non-oscillatory on the right if

lim sup
t→b−

R2
2(t)r(t)p(t) < 1/4. (11)

P r o o f. The proof of this theorem is similar to the previous one with the
difference that now instead of equation (5) we employ the generalized Euler
equation

(r(t)u′(t))′ +
α

r(t)R2
2(t)

u(t) = 0, t ∈ (a, b), (12)

the linear independent solutions of which are the functions

u1(t) = [R2(t)]
1

2
+
√

1

4
−α
, u2(t) = [R2(t)]

1

2
−
√

1

4
−α if α <

1

4
,

u1(t) = [R2(t)]
1

2 , u2(t) = [R2(t)]
1

2 lnR2(t) if α =
1

4

and

u1(t) = [R2(t)]
1

2 cos
{

√

α− 1/4 lnR2(t)
}

,

u2(t) = [R2(t)]
1

2 sin
{

√

α− 1/4 lnR2(t)
}

if α >
1

4
.

�

Note that the above Theorem 2 extends Theorem 1 of [3].
We can also introduce the sufficient conditions for the oscillation (non-

oscillation) of equation (1) on the left or on the right in another form. In
order to do it, first we put

R3(t) =

∫ c

t

ds

r(s)
for t ∈ (a, c), (13)

where c is some number in (a, b). By using the function R3, we obtain the
following result.
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Theorem 3. Suppose that limt→a+ R3(t) = ∞. Then equation (1) is oscil-
latory on the left if

lim inf
t→a+

R2
3(t)r(t)p(t) > 1/4 (14)

and it is non-oscillatory on the left if

lim sup
t→a+

R2
3(t)r(t)p(t) < 1/4. (15)

P r o o f. To prove this theorem means to repeat the proof of the next
Theorem 4 with the difference that instead of equation (20) we use for
comparison the generalized Euler equation

(r(t)u′(t))′ +
α

r(t)R2
3(t)

u(t) = 0, t ∈ (a, c) (16)

with the solutions

u1(t) = [R3(t)]
1

2
+
√

1

4
−α
, u2(t) = [R3(t)]

1

2
−
√

1

4
−α if α <

1

4
,

u1(t) = [R3(t)]
1

2 , u2(t) = [R3(t)]
1

2 lnR3(t) if α =
1

4
,

and

u1(t) = [R3(t)]
1

2 cos
{

√

α− 1/4 lnR3(t)
}

,

u2(t) = [R3(t)]
1

2 sin
{

√

α− 1/4 lnR3(t)
}

if α >
1

4
.

Thus, we omit details of the proof.
�

At last we put

R4(t) =

∫ t

d

ds

r(s)
for t ∈ (d, b), (17)

where d is some number in (a, b), and give another result on oscillation on
the right.

Theorem 4. Suppose that limt→b− R4(t) = ∞. Then equation (1) is oscil-
latory on the right if

lim inf
t→b−

R2
4(t)r(t)p(t) > 1/4 (18)

and it is non-oscillatory on the right if

lim sup
t→b−

R2
4(t)r(t)p(t) < 1/4. (19)
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P r o o f. Now we can act as in the proof of Theorem 1. On the interval
(d, b), we consider the equation (1) and the generalized Euler equation

(r(t)u′(t))′ +
α

r(t)R2
4(t)

u(t) = 0, t ∈ (d, b) (20)

with the solutions

u1(t) = [R4(t)]
1

2
+
√

1

4
−α
, u2(t) = [R4(t)]

1

2
−
√

1

4
−α if α <

1

4
,

u1(t) = [R4(t)]
1

2 , u2(t) = [R4(t)]
1

2 lnR4(t) if α =
1

4
,

and

u1(t) = [R4(t)]
1

2 cos
{

√

α− 1/4 lnR4(t)
}

,

u2(t) = [R4(t)]
1

2 sin
{

√

α− 1/4 lnR4(t)
}

if α >
1

4
.

Concerning the assumption limt→b− R4(t) = ∞, we see that equation (20)
is oscillatory on the right if α > 1/4 and it is non-oscillatory on the right if
α ≤ 1/4.

According to the Sturm comparison theorem, we know that equation
(1) is oscillatory on the right if for some t1 ∈ (d, b) and some α > 1/4 the
inequality

p(t) ≥ α

r(t)R2
4(t)

for t ∈ (t1, b) (21)

is satisfied. On the other hand, equation (1) is non-oscillatory on the right
if for some t2 ∈ (d, b) and some α ≤ 1/4 the inequality

p(t) ≤ α

r(t)R2
4(t)

for t ∈ (t2, b) (22)

is satisfied.
We put β = lim inft→b− R

2
4(t)r(t)p(t).

Then following the assumption (18), we know that for every ε > 0, i.e.
also for such ε that µ = β − ε > 1/4, there exists t1 ∈ (d, b) such that for
t ∈ (t1, b) we have

R2
4(t)r(t)p(t) ≥ µ

which means (by (21)) that equation (1) is oscillatory on the right.
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Now we put γ = lim supt→b− R
2
4(t)r(t)p(t).

In a like manner, the assumption (19) says that for every ε > 0, i.e.
also for such ε that ν = γ + ε < 1/4, there exists t2 ∈ (d, b) such that for
t ∈ (t2, b) we have

R2
4(t)r(t)p(t) ≤ ν

which means (by (22)) that equation (1) is non-oscillatory on the right and
the proof is complete.

�

Note that the above Theorem 4 extends Theorem 2.3 of [2].
As an illustration of previous theorems, we give the following examples.

Example 1. Consider the differential equation

(

(t+ 3)1/4y′(t)
)′

+

(

(

3

4

)3 1

(t+ 3)5/2
+

33

44

1

(t+ 3)7/4

)

y(t) = 0, t ∈ (−3,∞).

(23)

We see that r(t) = (t + 3)1/4 and p(t) =
(

3
4

)3 1
(t+3)5/2 + 33

44

1
(t+3)7/4 which

implies that

R1(t) =

∫ t

−3

ds

(s+ 3)1/4
=

4

3
(t+ 3)3/4,

limt→−3+ R1(t) = 0, lim inft→−3+ R2
1(t)r(t)p(t) = limt→−3+ R2

1(t)r(t)p(t) =
∞. From here, according to Theorem 1, we know that equation (23) is os-
cillatory on the left. Putting e.g. d = 1, we have

R4(t) =

∫ t

1

ds

(s+ 3)1/4
=

4

3

[

(t+ 3)3/4 − 43/4
]

.

Then limt→∞R4(t) =∞, lim supt→∞R2
4(t)r(t)p(t) = limt→∞R2

4(t)r(t)p(t) =
= 3/16 and, by Theorem 4, we know that equation (23) is non-oscillatory
on the right.
Note that one solution of equation (23) is y(t) = (t+3)9/16 cos(

√
3(t+3)−3/8).

�

Example 2. Consider the differential equation

(

ty′(t)
)′

+
9

t
y(t) = 0, t ∈ (0,∞). (24)

We see that r(t) = t, p(t) = 9/t. Putting c = 2, we have

R3(t) =

∫ 2

t

ds

s
= ln

2

t
,
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limt→0+ R3(t) = ∞, lim inft→0+ R2
3(t)r(t)p(t) = limt→0+ R2

3(t)r(t)p(t) = ∞.
According to Theorem 3, we know that equation (24) is oscillatory on the
left. Putting d = 1, we have

R4(t) =

∫ t

1

ds

s
= ln t.

Then limt→∞R4(t) =∞, lim inft→∞R2
4(t)r(t)p(t) = limt→∞R2

4(t)r(t)p(t) =
∞. Following Theorem 4, we know that equation (24) is oscillatory on the
right.
Note that one solution of equation (24) is y(t) = sin

(

ln 2
t3

)

.
�

Example 3. Consider the differential equation
(

t2y′(t)
)′

+
5

4
y(t) = 0, t ∈ (0, 100). (25)

We see that r(t) = t2, p(t) = 5/4. Putting c = 10, we have

R3(t) =

∫ 10

t

ds

s2
=

1

t
− 1

10
,

limt→0+ R3(t) = ∞, lim inft→0+ R2
3(t)r(t)p(t) = limt→0+ R2

3(t)r(t)p(t) = 5
4 .

According to Theorem 3, we know that equation (25) is oscillatory on the
left.
Moreover

R2(t) =

∫ 100

t

ds

s2
=

1

t
− 1

100
.

Then
limt→100− R2(t) = 0, lim supt→100− R

2
2(t)r(t)p(t) = limt→100− R

2
2(t)r(t)p(t) =

0.
Following Theorem 2, we know that equation (25) is non-oscillatory on the
right. Note that one solution of equation (25) is y(t) = t−1/2 sin ln t.

�

Now we give an information about count of zero points for solutions to
the differential equation (1).

Note that in the rest of this paper, by [x] (x ∈ R) we mark the biggest
integer which is less or equal to x, i.e. x ∈ R ⇒ [x] ≤ x < [x] + 1.

Theorem 5. Assume that 0 ≤ limt→a+ R1(t) < ∞ and t1, t2 ∈ (a, b) are
such that t1 < t2. Let for t ∈ [t1, t2] the inequality

R2
1(t)r(t)p(t) >

1

4
(26)

be satisfied. Denote by σ the count of zero points for a solution to the dif-
ferential equation (1) on the interval [t1, t2]. Then we have
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[

√

α− 1/4

π
ln
R1(t2)

R1(t1)

]

≤ σ ≤
[

√

β − 1/4

π
ln
R1(t2)

R1(t1)

]

+ 1, (27)

where α = mint∈[t1,t2]R
2
1(t)r(t)p(t), β = maxt∈[t1,t2]R

2
1(t)r(t)p(t).

P r o o f. The continuity of the function R2
1(t)r(t)p(t) on the interval [t1, t2]

and inequality (26) yield the inequality α > 1/4. We know already that for
α > 1/4 the linearly independent solutions to equation (5) are given by (6)
and we see that the function

√

α− 1/4 lnR1(t) maps the interval [t1, t2] into
the interval

[

√

α− 1/4 lnR1(t1),
√

α− 1/4 lnR1(t2)
]

,

i.e. into the interval of the length
√

α− 1/4 ln R1(t2)
R1(t1) . But then the count of

zero points for a solution to equation (5) on the interval [t1, t2] is at most
[

√

α− 1/4

π
ln
R1(t2)

R1(t1)

]

+ 1.

The inequality R2
1(t)r(t)p(t) ≥ α for t ∈ [t1, t2] ensures that between any

two zero points of a solution to equation (5) there is at least one zero point
of a solution to equation (1) and we have the left inequality of (27). One
can obtain the right inequality of (27) by similar arguments.

�

Similar results on count of zero points can be obtained if some of func-
tions R2, R3 and R4 defined by (9), (13) and (17) are used instead of the
function R1.
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