PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

E-shaped Aperture Coupled Microstrip Patch Array Antenna for High Speed Downlink Applications in Small Satellites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For high speed downlinking of payload data from small satellites, a new 4×4 aperture coupled microstrip patch array antenna has been presented. The antenna is designed for the Ku band and a peak gain of 18.0 dBi is achieved within the impedance bandwidth from 11.75 GHz to 12.75 GHz. Wide bandwidth is achieved as the patch elements are excited through E-shaped slots having asymmetric side lengths and widths. Each square patch element of the array with truncated corners and appropriately placed slots generates right hand circularly polarized (RHCP) radiation with very high cross-polarization discrimination. A corporate feed network consisting of T-junctions and quarter-wave impedance transformers is developed to feed the array elements from a single coaxial port of 50 Ω. To improve the radiation from the patches and wave-guiding in the feed network, two types of Rogers substrates with different dielectric constant and thickness are considered. Our proposed microstrip patch array antenna of size 7.8 cm × 6.4 cm × 0.3 cm can perform efficiently with a downlink data rate as high as 4.6 Gbps for small satellites.
Rocznik
Strony
47--56
Opis fizyczny
Bibliogr. 38 poz., schem., tab., wykr.
Twórcy
  • Dept. of Electrical and Electronic Engineering, Jatiya Kabi Kazi Nazrul Islam University, Mymensingh, Bangladesh
autor
  • Dept. of Electrical and Electronic Engineering, University of Dhaka, Dhaka, Bangladesh
Bibliografia
  • [1] M. T. Islam, M. Cho, M. Samsuzzaman, and S. Kibria, “Compact Antenna for Small Satellite Applications”, IEEE Antennas and Propagation Magazine, 57 (2), pp. 30-36 (2015), https://doi.org/10.1109/MAP.2015.2420471.
  • [2] F. E. Tubbal, R. Raad, and K. Chin, “A Survey and Study of Planar Antennas for Pico-Satellites”, IEEE Access, 3, pp. 2590-2612 (2015), https://doi.org/10.1109/ACCESS.2015.2506577.
  • [3] T.R. Jones, J.P. Grey, and M. Daneshmand, “Solar Panel Integrated Circular polarized Aperture-Coupled Patch Antenna for CubeSat Applications”, IEEE Antennas and Wireless Propagation Letters, 17(10), pp. 1895-1899 (2018), https://doi.org/10.1109/LAWP.2018.2869321.
  • [4] M. J. Veljovic, and A. K. Skrivervik, “Aperture-Coupled Low-Profile Wideband Patch Antennas for CubeSat”, IEEE Transactions on Antennas and Propagation, 67(5), pp. 3439-3444 (2019), https://doi.org/10.1109/TAP.2019.2900428.
  • [5] G. Kumar and K. P. Ray, “Broadband Microstrip Antennas” (Artech House Inc., London, UK, 2003, 1st edn.), pp. 331–353.
  • [6] M. A. B. Kortright and R. N. Simons, “K-Band Cross-Aperture Coupled Circularly Polarized Dual Frequency Microstrip Patch Antenna with Single Feed,” 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, pp. 337-338, July 2018, https://doi.org/10.1109/APUSNCURSINRSM.2018.8608618.
  • [7] C. H. Lai, T. Y. Han, and T. R. Chen, “Broadband aperture-coupled microstrip antennas with low cross polarization and back radiation,” Progress In Electromagnetics Research Letters, 5, pp. 187-197 (2008), https://doi.org/10.2528/PIERL08111805.
  • [8] K. P. Yang, and K. L. Wong, “Inclined-slot-coupled compact dual-frequency microstrip antenna with cross-slot,” Electronics Letters, 34(4), pp. 321-322 (1998). https://doi.org/10.1049/el:19980222.
  • [9] X. F. Zhu and D. L. Su, “Symmetric E-shaped slot for UWB antenna with band-notched characteristic,” Microwave and Optical Technology Letters, 52 (7), pp. 1594–1597 (2010), https://doi.org/10.1002/mop.25284.
  • [10] A. Dastranj and H. Abiri, “Bandwidth Enhancement of Printed E-Shaped Slot Antennas Fed by CPW and Microstrip Line,” IEEE Transactions on Antennas and Propagation, 58 (4), pp. 1402-1407 (2010), doi: https://doi.org/10.1109/TAP.2010.2041164.
  • [11] S. Chen, and M. Shie, “A Compact High Gain X-Band Patch Antenna for Cube and Small Satellite Applications”, IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, pp. 1561-1562, July 2019, doi: https://doi.org/10.1109/APUSNCURSINRSM.2019.8888759.
  • [12] M. Samsuzzaman, M. T. Islam, N. Misran, and M. A. Mohd Ali, “Dual Band X Shape Microstrip Patch Antenna for Satellite Applications”, Procedia Technology, 11, pp. 1223-1228 (2013), https://doi.org/10.1016/j.protcy.2013.12.317.
  • [13] F. Nashad, S. Foti, D. Smith, M. Elsdon, and O. Yurduseven, “Ku-band suspended meshed patch antenna integrated with solar cells for remote area applications”, Progress In Electromagnetics Research, 83, pp. 245-254 (2018), https://doi.org/10.2528/PIERC18020608.
  • [14] “A Network to Connect the Globe,” https://www.keplercommunications.com/network#tars-slide, accessed December 2020.
  • [15] R. B. Waterhouse, “Microstrip Patch Antennas: A Designer’s Guide” (Springer Science+ Business Media, New York, USA, 2003, 1st edn.), pp. 327-350.
  • [16] T. T. S. Borel, A. R. Yadav, and U. Shah, “Design of Rectangular Patch Array Antenna for Satellite Communication”, 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, pp. 759-764, March 2019, https://doi.org/10.1109/ICCMC.2019.8819861.
  • [17] P. Bouca, J. N. Matos, S. Cunha, and N. B. Carvalho, “Low-Profile Aperture-Coupled Patch Antenna Array for CubeSat Applications,” IEEE Access, 8, pp. 20473–20479 (2020), https://doi.org/10.1109/ACCESS.2020.2968060.
  • [18] F. Qin, S. Gao, G. Wei, Q. Luo, C. Mao, C. Gu, J. Xu, and J. Li, “Wideband Circularly polarized Fabry-Perot Antenna”, IEEE Antennas and Propagation Magazine, 57(5), pp. 127-135 (2015), https://doi.org/10.1109/MAP.2015.2470678.
  • [19] “X-Band 16 Element Patch Antenna Array,” https://satcatalog.com/component/x-band-4x4-patch-antenna/, accessed January 2021.
  • [20] “Satellite Platforms,” https://www.sstl.co.uk/what-we-do/satellite-platforms, accessed January 2021.
  • [21] C. E. Lesanu and A. Done, “Parasitic circular polarized vertical antennas,” International Conference on Development and Application Systems (DAS), Suceava, Romania, pp. 143-149, May 2016, https://doi.org/10.1109/DAAS.2016.7492564.
  • [22] A. T. Joseph, M. Deshpande, P. E. O’Neill, and L. Miles, “Development of VHF (240–270 MHz) antennas for SoOp (signal of opportunity) receiver for 6U Cubesat platforms,” Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, pp. 2530-2531, August 2016, https://doi.org/10.1109/PIERS.2016.7735037.
  • [23] J. Costantine, Y. Tawk, A. Ernest, and C. G. Christodoulou, “Deployable antennas for CubeSat and space communications,” 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, pp. 837-840, March 2012, https://doi.org/10.1109/EuCAP.2012.6206124.
  • [24] S. Gao, Y. Rahmat-Samii, R. E. Hodges, and X. X. Yang, “Advanced Antennas for Small Satellites,” Proceedings of the IEEE, 106(3), pp. 391-403 (2018), https://doi.org/10.1109/JPROC.2018.2804664.
  • [25] K. Devaraj, “Small Satellite Antennas,” in Pelton, J.N., Madry, S. (Ed.): “Handbook of Small Satellites” (Springer, Chapel Hill, NC, USA, 1st edn.), pp. 203-213 (2020).
  • [26] “CanX-2: System Overview,” https://www.utias-sfl.net/?pageid=172, accessed February 2021.
  • [27] J. Huang, “Microstrip Antennas: Analysis, Design, and Application,” in Balanis, C. A. (Ed.): “Modern Antenna Handbook” (John Wiley & Sons Inc., USA, 2008, 1st edn.), pp. 157–196.
  • [28] C. A. Balanis, “Antenna Theory - Analysis and Design,” (John Wiley and Sons Ltd., New York, NY, USA, 2005, 3rd edn.), pp. 811–872.
  • [29] “Circular polarisation vs. Linear polarisation-Intelsat,” http://www.intelsat.com/wp-content/uploads/2013/02/polarisation.pdf, accessed February 2021.
  • [30] M. Haneishi and S. Yoshida, “A design method of circularly polarized rectangular microstrip antenna by one-point feed,” Electronics and Communications in Japan (Part I: Communications), 64 (4), pp. 46–54 (1981), https://doi.org/10.1002/ecja.4410640407.
  • [31] K. Carver and J. Mink, “Microstrip antenna technology,” IEEE Transactions on Antennas and Propagation, 29 (1), pp. 2-24 (1981), https://doi.org/10.1109/TAP.1981.1142523.
  • [32] T. A. Miligan, “Modern Antenna Design” (John Wiley and Sons Ltd., Hoboken, New Jersey, USA, 2005, 2nd edn.), pp. 293–319.
  • [33] D. M. Pozar, “Microstrip antennas,” Proceedings of the IEEE, 80 (1), pp. 79-91 (1992).
  • [34] R. Bancroft, “Microstrip and Printed Antenna Design” (SciTech Publishing Inc., Raleigh, NC, USA, 2009, 2nd edn.), pp. 142–176.
  • [35] R. P. Owens, “Microstrip antenna feeds,” in James, J. R., Hall, P. S. (Ed.): “Handbook of Microstrip Antennas” (Peter peregrines Ltd., London, UK, 1989, 1st edn.), pp. 815–855.
  • [36] “Link budget calculations,” https://www.kymetacorp.com/wp-content/uploads/2019/06/Link-Budget-Calculations-2.pdf, accessed March 2021.
  • [37] “Calculations for Space Communication,” http://propagation.ece.gatech.edu/ECE6390/project/Sum2015/team5/satellite-downlink.html, accessed April 2021.
  • [38] D. Roddy, “Satellite Communications” (McGraw-Hill Companies, Inc., New York, NY, USA, 2006, 4th edn.), pp. 351–368.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db040c67-29ad-40a7-a521-b5ec39e22bff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.