PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prestress state evolution during thermal activation of memory effect in concrete beams strengthened with external SMA wires

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The memory effect of shape-memory alloys (SMAs) has opened interesting perspectives to create prestress states in concrete elements. However, the procedure has not been yet fully resolved due to the complex thermomechanical behavior of these alloys, in addition to the practical difficulties of mechanical coupling between SMA and concrete elements. The present study deals with tests on the development of prestressing forces in concrete beams during the thermal cycle required in the procedure. Pre-stretched nickel–titanium wires were externally placed on concrete prismatic beams equipped with strain gauges. As concrete rupture may occur during the heating by the Joule effect, a compromise must be found between the SMA pre-stretch level and the maximum temperature to be applied before returning to ambient temperature. A macroscopic model was developed to analyze this compromise. The complex thermomechanical response of SMAs implies a particular attention in the definition of the ambient temperature and heating conditions for the creation of prestress states in concrete components.
Rocznik
Strony
659--673
Opis fizyczny
Bibliogr. 40 poz., fot., rys., wykr.
Twórcy
autor
  • Aldebud Aleksandra Dębska, 30689 Kraków, Poland
  • Cracow University of Technology, 31155 Kraków, Poland
autor
  • Cracow University of Technology, 31155 Kraków, Poland
  • CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
  • CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
Bibliografia
  • [1] Otsuka K, Wayman CM. Shape memory materials. Cambridge: Cambridge University Press; 1999.
  • [2] Lexcellent C. Shape-memory alloys handbook. London: ISTE & Wiley; 2013.
  • [3] Ziółkowski A. Pseudoelasticity of shape memory alloys: theory and experimental studies. Oxford: Butterworth-Heinemann; 2015.
  • [4] Lagoudas DC. Shape memory alloys: modeling and engineering applications. New York: Springer, US; 2010.
  • [5] Zbiciak A, Wasilewski K. Constitutive modelling and numerical implementation of SMA material with internal loops. Arch Civ Eng. 2018;64:211–32.
  • [6] Debska A, Balandraud X, Destrebecq JF, Gwozdziewicz P, Seruga A. Influence of thermal boundary effects on the process of creating recovery stresses in a SMA wire activated by Joule heating. J Mater Eng Perform. 2017;26:3336–46.
  • [7] Mazzolani FM, Mandara A. Modern trends in the use of special metals for the improvement of historical and monumental structures. Eng Struct. 2002;24:843–56.
  • [8] Song G, Ma N, Li HN. Review of applications of shape memory alloys in civil structures. In: Malla RB, Maji A, editors. Engineering, construction and operations in challenging environments: earth and space. New York: Amer Soc Civil Engineers; 2004. p. 559–566.
  • [9] Song G, Ma N, Li HN. Application of shape memory alloys in civil structures. Eng Struct. 2006;28:1266–74.
  • [10] Janke L, Czaderski C, Motavalli M, Ruth J. Applications of shape memory alloys in civil engineering structures-overview, limits and new ideas. Mater Struct. 2005;38:578–92.
  • [11] Alam MS, Youssef MA, Nehdi M. Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review. Can J Civil Eng. 2007;34:1075–86.
  • [12] Motavalli M, Czaderski C, Bergamini A, Janke L. Shape memory alloys for civil engineering structures-on the way from vision to reality. In: 6th international conference (AMCM’2008), June 6–11, 2008, Łódź, Poland. 2008. p. 91–108.
  • [13] Motavalli M, Czaderski C, Bergamini A, Janke L. Application of shape memory alloys in civil engineering; past, present and future. In: 17th international conference on composites or nano engineer-ing (ICCE 17), 26 July-1 August 2009, Honolulu (T.H.).
  • [14] Cladera A, Weber B, Leinenbach C, Czaderski C, Shahverdi M, Motavalli M. Iron-based shape memory alloys for civil engineering structures: an overview. Constr Build Mater. 2014;63:281–93.
  • [15] Dong JH, Cai CS, Okeil AM. Overview of potential and existing applications of shape memory alloys in bridges. J Bridge Eng. 2011;16:305–15.
  • [16] Casciati S. SMA-based devices: insight across recent proposals toward civil engineering applications. Smart Struct Syst. 2019;24:111–25.
  • [17] Zhao H, Andrawes B. Innovative prestressing technique using curved shape memory alloy reinforcement. Constr Build Mater. 2020;238:117687.
  • [18] Shahverdi M, Czaderski C, Annen P, Motavalli M. Strengthening of RC beams by iron-based shape memory alloy bars embedded in a shotcrete layer. Eng Struct. 2016;117:263–73.
  • [19] Rojob H, El-Hacha R. Performance of RC beams strengthened with self-prestressed Fe-SMA bars exposed to freeze-thaw cycles and sustained load. Eng Struct. 2018;169:107–18.
  • [20] Miralami M, Esfahani MR, Tavakkolizadeh M. Strengthening of circular RC column-foundation connections with GFRP/SMA bars and CFRP wraps. Compos Part B Eng. 2019;172:161–72.
  • [21] Oudah F, El-Hacha R. Joint performance in concrete beam-column connections reinforced using SMA smart material. Eng Struct. 2017;151:745–60.
  • [22] Fritsch E, Izadi M, Ghafoori E. Development of nail-anchor strengthening system with iron-based shape memory alloy (Fe-SMA) strips. Constr Build Mater. 2019;229:117042.
  • [23] Andrawes B, Shin M, Wierschem N. Active confinement of reinforced concrete bridge columns using shape memory alloys. J Bridge Eng. 2010;15:81–9.
  • [24] El-Hacha R, Abdelrahman K. Behaviour of circular SMA-confined reinforced concrete columns subjected to eccentric loading. Eng Struct. 2020;215:110443.
  • [25] Abdelrahman K, El-Hacha R. Analytical prediction model for circular SMA-confined reinforced concrete columns. Eng Struct. 2020;213:110547.
  • [26] Karhu M, Lindroos T. Long-term behaviour of binary Ti–49.7Ni (at.%) SMA actuators-the fatigue lives and evolution of strains on thermal cycling. Smart Mater Struct. 2010;19:11.
  • [27] ASTM F2004-05. Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. West Con-shohocken: ASTM International; 2010. https ://doi.org/10.1520/F2004 -05R10.
  • [28] Gądek S, Hebda M, Kazior J. Zastosowanie dylatometrii w badaniach przemysłowych na przykładzie proszku ferrytycznej stali nierdzewnej AISI 434L. Czasopismo Techniczne. Mechanika/Technical Transactions. Mechanics. Vol. R. 109, z. 9-M. Kraków: Wydawnictwo PK; 2012. p. 77–87.
  • [29] Destrebecq JF, Balandraud X. Interaction between concrete cylinders and shape-memory wires in the achievement of active confinement. In: Ochsner A et al., editors. Materials with complex behaviour: modelling, simulation, testing, and applications. Advanced structured materials, vol. 3. Berlin: Springer; 2010. p. 19–34. https ://doi.org/10.1007/978-3-642-12667 -3_2.
  • [30] Tran H, Balandraud X, Destrebecq JF. Recovery stresses in SMA wires for civil engineering applications: experimental analysis and thermomechanical modelling. Materialwiss Werkst. 2011;42:435–43.
  • [31] Debska A, Balandraud X, Gwozdziewicz P, Destrebecq JF, Seruga A. An experimental study of the use of shape memory alloy for the prestressing of small scale concrete beams. In: AMCM 2011: 7th international conference analytical models and new concepts in concrete and masonry structures, June 13–15, 2011, Crakow.
  • [32] Tran H, Balandraud X, Destrebecq JF. Improvement of the mechanical performances of concrete cylinders confined actively or passively by means of SMA wires. Arch Civ Mech Eng. 2015;15:292–9.
  • [33] Debska A, Balandraud X, Destrebecq JF, Seruga A, Gwozdziewicz P. Badania betonowych belek sprężonych zewnętrznie wstępnie odkształconym drutem z pamięcią kształtu (SMA). In: Derkowski W et al., editors. Konferencja Naukowo-Techniczna Konstrukcje Sprezone (KS2018), April 18–20, 2018, Cracow, Poland. Politechnika Krakowska; 2018. p. 83–86.
  • [34] Heller L, Seiner H, Šittner P, Sedlák P, Tyca O, Kadeřávek L. On the plastic deformation accompanying cyclic martensitic transformation in thermomechanically loaded NiTi. Int J Plast. 2018;111:53–71.
  • [35] Sittner P, Heller L, Pilch J, Curfs C, Alonso T, Favier D. Young’s modulus of austenite and martensite phases in superelastic NiTi wires. J Mater Eng Perform. 2014;23:2303–14.
  • [36] Instrukcja Instytutu Techniki Budowlanej. Laboratoria Budowlane. Praca zbiorowa (in Polish; Instruction of Institut Techniki Budowlanej. Construction Laboratories). Instytut Techniki Budowlanej Warszawa, 1971, s.1–196. Poland.
  • [37] Favier D, Louche H, Schlosser P, Orgeas L, Vacher P, Debove L. Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension Investigation via temperature and strain fields measurements. Acta Mater. 2007;55:5310–22.
  • [38] Zheng L, He Y, Moumni Z. Effects of Luderslike bands on NiTi fatigue behaviors. Int J Solids Struct. 2016;83:28–44.
  • [39] Dong L, Zhou RH, Wang XL, Hu GK, Sun QP. On interfacial energy of macroscopic domains in polycrystalline NiTi shape memory alloys. Int J Solids Struct. 2016;80:445–55.
  • [40] Jury A, Balandraud X, Heller L, Šittner P, Karlik M. Reconstruction of heat sources induced in superelastically loaded Ni-Ti wire by localized deformation processes. Exp Mech. 2020. https ://doi.org/10.1007/s1134 0-020-00648 -8.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db007d75-0d6c-4291-99fa-0351d069ff0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.