PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of sulphation baking and autogenous leaching behaviour of Turkish metallurgical slag flotation tailings

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Turkish metallurgical slag flotation tailing’s (MSFT) that has not been evaluated yet sulphation baking phase transformations and autogenous leaching behaviour were investigated. The MSFT in the study consists of the residual fayalite (FeO•SiO2) phase from the flotation, with a copper recovery of 87%, of the slag released during the smelting of the copper sulphide mine in northern Turkey, and the non-soluble glassy/amorphous structure containing the 0.34%Cu, 4.16%Zn and 0.15%Co base metals locked and doped to this phase. The effects of temperature (350 -650°C) and sulphuric acid dosages (4-10 ml) on sulphation baking were investigated by X-ray diffraction and sulphur analyses of the baked MSFT (B-MSFT) to produce soluble base metal sulphates. Since sulphated metals are a kind of metal salt, autogenous leaching was applied to the B-MSFTs only with purified water to dissolute copper, zinc and cobalt. X-ray diffraction patterns show the transformation of fayalite to oxide and sulphate phases due to sulphation baking. All dissolution values of Co and Zn obtained by autogenous leaching of B-MSFTs produced under all determined conditions are almost the same as one another. This indicates that Co and Zn are doped to fayalite together and that part of cobalt is doped to the zincite structure and liberated and sulphated together. This study showed that MSFTs decompose leading to liberation and sulphation of the doped base metals in its structure at a rate of ≥90%, and that they autogenously dissolve under atmospheric conditions leading to recovery in a simple and economic manner.
Rocznik
Strony
107--116
Opis fizyczny
Bibliogr. 21 poz., rys. kolor.
Twórcy
  • Marmara University, Technology Faculty, Department of Metallurgy and Materials Engineering
Bibliografia
  • ADEEL, M., SAEED, M., KHAN, I., MUNEER, M., AKRAM, N., 2021. Synthesis and Characterization of Co–ZnO and Evaluation of Its Photocatalytic Activity for Photodegradation of Methyl Orange. ACS Omega 6, 1426–1435.
  • CARRANZA, F., IGLESIAS, N., MAZUELOS, A., ROMERO, R., FORCAT, O., 2009. Ferric leaching of copper slag flotation tailings. Miner. Eng. 22, 107–110.
  • DİMİTRİJEVİC, M.D, UROSEVİC, D.M, JANKOVİC, Z.D., 2016. Recovery of copper from smeltıng slag by sulphatıon roastıng and water leachıng. Physicochem. Probl. Miner. Process.52(1), 409-421.
  • GABASIANE, T.S., BHERO, S., DANHA, G., 2019. Waste management and treatment of copper slag BCL, Selebi Phikwe Botswana: Review. Procedia Manuf. 35, 494–499.
  • GORAI, B., JANA, R.K., PREMCHAND, 2003. Characteristics and utilisation of copper slag - a review. Resources Condervation and Recycling, 39(4), 299-313.
  • HERREROS, O., QUIROZ, R., MANZANO, E., BOU, C., VIÑALS, J., 1998. Copper extraction from reverberatory and flash furnace slags by chlorine leaching. Hydrometallurgy 49, 87–101.
  • LI, S., PAN, J., ZHU, D., GUO, Z., XU, J., CHOU, J., 2019. A novel process to upgrade the copper slag by direct reduction-magnetic separation with the addition of Na 2 CO3 and CaO. Powder Technol. 347, 159–169.
  • LI, Y., PAPANGELAKIS, V.G., PEREDERIY, I., 2009. High pressure oxidative acid leaching of nickel smelter slag: Characterization of feed and residue. Hydrometallurgy 97, 185–193.
  • MIGANEI, L., GOCK, E., ACHIMOVIČOVÁ, M., KOCH, L., ZOBEL, H., KÄHLER, J., 2017. New residue-free processing of copper slag from smelter. J. Clean. Prod. 164, 534–542.
  • MIKODA, B., POTYSZ, A., KMIECIK, E., 2019. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans. J. Environ. Manage. 236, 436–445.
  • NADIROV, R.K., SYZDYKOVA, L.I., ZHUSSUPOVA, A.K., USSERBAEV, M.T., 2013. Recovery of value metals from copper smelter slag by ammonium chloride treatment. Int. J. Miner. Process. 124, 145–149.
  • PEREDERIY, I., PAPANGELAKIS, V.G., 2017. Why amorphous FeO-SiO2 slags do not acid-leach at high temperatures. J. Hazard. Mater. 321, 737–744.
  • PEREDERIY, I., PAPANGELAKIS, V.G., MIHAYLOV, I., 2012. Nickel smelter slag microstructure and its effect on slag leachability, in: TMS Annual Meeting. Minerals, Metals and Materials Society, pp. 225–237.
  • PRASAD, S., PANDEY, B.D., 1999. Sulphation Roasting Studies on Synthetic Copper-Iron Sulphides with Steam and Oxygen. Can. Metall. Q. 38, 237–247.
  • SCALES, M., 1986. Smelter modernization. Can. Min. J. 107, 44–50.
  • SHEN, H., FORSSBERG, E., 2003. An overview of recovery of metals from slags. Waste Manag. 23, 933–949.
  • SONG, S., SUN, W., WANG, L., LIU, R., HAN, H., HU, Y., YANG, Y., 2019. Recovery of cobalt and zinc from the leaching solution of zinc smelting slag. J. Environ. Chem. Eng. 7, 102777.
  • TÜMEN, F., BAILEY, N.T., 1990. Recovery of metal values from copper smelter slags by roasting with pyrite. Hydrometallurgy 25, 317–328.
  • UZUN, E., ZENGIN, M., ATILGAN, I., 2016. Improvement of selective copper extraction from a heat-treated chalcopyrite concentrate with atmospheric sulphuric-acid leaching. Mater. Tehnol. 50, 395–401.
  • WANG, Z., ZHAO, Z., ZHANG, L., LIU, F., PENG, B., CHAI, L., LIU, DACHUN, LIU, DEGANG, WANG, T., LIU, H., LIANG, Y., 2019. Formation mechanism of zinc-doped fayalite (Fe2-xZnxSiO4) slag during copper smelting. J. Hazard. Mater. 364, 488–498.
  • YANG, Z., RUI-LIN, M., WANG-DONG, N., HUI, W., 2010. Selective leaching of base metals from copper smelter slag. Hydrometallurgy 103, 25–29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-daf7fdea-c76e-4650-ad94-9757d63b8555
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.