Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The influence of the slip factor on the MHD 2-liquid heat transfer flow of ionized gases within a channel between two non-conducting plates with Hall currents is investigated theoretically. Slip conditions were used to obtain solutions for the velocity and temperature fields, as well as the heat transfer rates. The flow characteristics of the two liquids are studied for estimates of the leading parameters, for instance the magnetic parameter, Hall and slip factors, viscosity, density, height, electrical conductivity and the thermal conductivity ratios. It was observed that an upsurge in temperature in the two zones is caused by the thermal conductivity proportion. The rate of heat transfer coefficient diminishes up to a certain point, after that it starts to increase as the magnetic and Hall parameters increase.
Rocznik
Tom
Strony
65--85
Opis fizyczny
Bibliogr. 67 poz., wykr.
Twórcy
autor
- Department of Engineering Mathematics, Andhra University College of Engineering, Andhra University, Visakhapatnam- 530003, INDIA
autor
- Department of Engineering Mathematics, Andhra University College of Engineering, Andhra University, Visakhapatnam- 530003, INDIA
Bibliografia
- [1] Broer L.J.F. and Peletier L.A. (1960): A mechanical. Hall Effect.– Appl. Sci. Res., vol.8B, pp.259.
- [2] Sato H. (1961): The Hall effect in the viscous flow of ionized gas between parallel plates under transverse magnetic field.– J. Phys. Soc. Japan., vol.16, No.7, pp.1427-1433.
- [3] Sherman A. and Sutton G.W. (1961): Magnetohydrodynamics.– (Evanston, Illinois), pp.123.
- [4] Gubanov A.I. and Lunkin P.T. (1961): Combined effects of Hall current and rotation on unsteady Couette flow in a porous channel.– Soviet Physics-Technical Physics, vol.5, p.984.
- [5] Tani I. (1962): Steady flow of conducting fluids in channels under transverse magnetic fields with consideration of Hall effect.– J. Aerospace Sci., vol.29, pp.297.
- [6] Kusukawa K. (1962): Magneto-Fluid Dynamical Inviscid Flows.– Supplement of the Progress of Theoretical Physics, No.24.
- [7] Vatazhin A.B. (1965): Development of magnetohydrodynamic boundary layer on a solid body.– Zh. Prikl. Mech. Tech. on. Fsz., vol.2, pp.3.
- [8] Katagiri M. (1969): The effect of hall currents on the magnetohydrodynamic boundary layer flow past a semi.– infinite flat plate.– J. Phys. Soc. Japan, vol.27, pp.1051-1059.
- [9] Cramer Kenneth R. and Shih Pai I. (1973): Magneto Fluid Dynamics for Engineers and Applied Physicists.– McGraw-Hill Company.
- [10] Debnath L., Ray S.C and Chatterjee A.K. (1979): Effects of Hall current on unsteady hydromagnetic flow past a porous plate in a rotating fluid system.– ZAMM- Zeitschrift for Angewandte Mathematik and Mechanik, vol.59, pp.469-471.
- [11] Raptis A. and Ram P.C. (1984): Effect of Hall current and rotation.– Astro. Phys. Space Sci., vol.106, pp.257.
- [12] Linga Raju T. and Ramana Rao V.V. (1993): Hall effects on temperature distribution in a rotating ionized hydromagnetic flow between parallel walls.– Int. J. Eng. Sci., vol.31, No.7, pp.1073-1091.
- [13] Watanabe T. and Pop I. (1995): Hall effect on magneto-hydrodynamic boundary layer flow over a continuous moving flat plate.– Acta Mechanica, vol.108, No.1, pp.35-47.
- [14] Helmy K.A. (1998): MHD unsteady free convective flow past a vertical porous plate.– Z. Angew. Math. Mech., vol.78, No.4, pp.255-270.
- [15] Aboeldahab E.M. and Elbarbary E.M.E. (2001): Hall current effect on magnetohydrodynamic free convection flow past a semi-infinite vertical plate with mass transfer.– Int. J. Eng. Sci., vol.39, pp.1641-1652.
- [16] Beg O.A., Zueco J. and Takhar H.S. (2009): Communications in nonlinear science and numerical simulation.– vol.14, pp.1082-1097.
- [17] Srivastava K.M. (2009): Effect of Hall current on the instability of an anisotropic plasma jet.– J. Plasma. Phys., vol.12, No.1, pp.33-43.
- [18] Singh A.K., Begum S.G. and Seth G.S. (2018): Influence of Hall current and wall conductivity on hydromagnetic mixed convective flow in a rotating Darcian channel.– Physics of Fluids.,vol.30, No.11, pp.113601-113612.
- [19] Linga Raju T. (2021): Electro-magnetohydrodynamic two fluid flow of ionized- gases with Hall and rotation Effects.– Int. J. App. Mech. Eng., vol.26, No.4, pp.128-144.
- [20] Linga Raju T. and Venkata Rao B. (2022): Unsteady electro magneto hydrodynamic flow and heat transfer of two ionized fluids in a rotating system with Hall currents.– Int. J. App. Mech. Eng., vol.27, No.1, pp.125-145.
- [21] Linga Raju T. and Venkata Rao B. (2022): The Hall effect on MHD 2-fluid unsteady heat transfer flow of plasma in a rotating system via a straight channel between conducting plates.– Int. J. App. Mech. Eng., vol.27, No.3, pp.137-162.
- [22] Schaaf S.A. and Chamre P.L. (1961): Flow of Rarefied Gases.– Princeton University Press Princeton, New York.
- [23] Lance G.N. and Rogers M.H. (1962): The axially symmetric flow of a viscous fluid between two infinite rotating disk.– Proc. R. Soe, vol.266, pp.109-121.
- [24] Street R.E. (1963): Aerodynamics in Rarefied Gas Dynamics.– Pergamen Press, London, pp.276.
- [25] Inman R.M. (1965): Heat transfer in thermal entrance region with laminar slip flow between parallel plates at unequal temperatures.– NASA-TN-D-2980.
- [26] Soundalgekar V.M., Haldavnekar D.D. and Dhavale A.T., (1968): MHD Rayleigh problem in slip flow regime.– Indian. J. Phys., vol.42, pp. 728-732.
- [27] Sastry V.V.K. and Bhadram C.V.V. (1976): Magneto gas dynamics flow past an infinite porous flat plate in slip flow regime.– Appl. Sci. Ras., vol.32, pp.415-428.
- [28] Tamada K.O. and Murali. (1978): Slip flow past a tangential flat plate at low Reynolds numbers.– J. Fluid. Mech., vol. 85, pp.731-742.
- [29] Bhatt B.S. and Sacheti N.C. (1979): The analogy in slip flows.– Applied Scientific Research, vol. 35, pp.37-41.
- [30] Miksis M.J. and Davis S.H. (1994): Slip over rough and coated surface.– Fluid Mech., vol. 273, pp.125-139.
- [31] Linga Raju T. (2007): Magnetohydrodynamic slip flow regime in a rotating channel.– J. Ind. Acad. Math., vol.29, pp.27.
- [32] Bhattacharyya K., Mukhopadhyay K.S. and Layek G.C. (2011): MHD Boundary layer slip flow and heat transfer over a flat plate.– Che. Phys. Lett., vol.28, No.2, 10.1088/0256-307X/28/2/024701.
- [33] Zaman H., Ahmad Z. and Ayub M. (2013): Mathematical Physics.– Hindawi publishing corporation. Article Id 705296, 10 pages.
- [34] Salman Ahmad., Shafqat Hussain., Abuzar Abid Siddiqui., Asad Ali and Muhammed Aqeel. (2014): Applications of Fourier transforms to MHD flow over an accelerated plates with partial slippage.– AIP Advances. vol.4, No.6, pp.067104-067110.
- [35] Linga Raju T. and Muralidhar P. (2015): Hall effect on ionized hydromagnetic slip flow between parallel walls in a rotating system.– Int. J. Eng. Res. Tech., vol.2, No.9, pp.1316-1333.
- [36] Saranya, D. and Vidhya D. (2018): Slip flow effects in MHD Couette flow with conducting walls.– Int. J. Pure and App. Maths., vol.119, No.18, pp.2551-2571.
- [37] Linga Raju T. and Neela Rao B.(2018): MHD Heat transfer slip flow between two parallel porous walls in a rotating system with Hall currents.– Int. J. Mat. Arch., vol. 9, No.2, pp.163-175.
- [38] Akbar., Noreen Sher., Hayat T., Nadeem S. and Obaidat S. (2012): Peristaltic flow of a Williamson hyperbolic fluid in an inclined asymmetric channel with slip and heat transfer.– Int. J. Heat and Mass Transfer, vol.55. No.7, pp.1855-1862.
- [39] Haq S.U., Khan I., Ali F., Khan A. and Abdelhanned T.N.A. (2015): Electro influence of slip condition on unsteady free convection flow of viscous fluid with ramped wall temperature.– Abs. App. Anal., pp.1-7, doi: 10.1155/2015/327975.
- [40] Dorfman A.S. (2017): Applications of Mathematical Heat Transfer and Fluid Flow models in Engineering and Medicine.– Wiley-ASME Press Series.
- [41] Rafiq M., Sajid M. and Alhazmi S.E. (2022): MHD electroosmotic peristaltic flow of Jeffrey nano fluid with slip conditions and chemical reaction.– Alexandria Engineering Journal, vol.61, No.12, pp.9977-9992.
- [42] Shail R. (1973): Laminar two-phase flows in magnetohydrodynamics.– Int. J. Eng. Sci., vol.11, pp.1103-1109.
- [43] Flavio Dobran (1981): The consistency conditions of averaging operators in 2-phase flow models and on the formulation of magnetohydrodynamic 2-phase flow.– Int. J. Eng. Sci., vol.19, No.10, pp.1353-1368.
- [44] Setayesh A. and Vireshwar S. (1990): Heat transfer in developing MHD Poiseuille flow and variable transport properties.– Int. J. Heat and Mass Transfer, vol.33, No.8, pp.1711-1720.
- [45] Chamkha A. J. (2000): Flow of two-immiscible fluids in porous and non-porous channels.– ASME Journal of Fluids Engineering, vol.122, pp.117-124.
- [46] Malashetty M.S., Umavathi J.C. and Prathap J. (2001): Convective MHD two fluid flow and heat transfer in an inclined channel.– Heat and Mass Transfer, vol.37, pp.259-264.
- [47] Stamenković Z.M., Nikodijević D.D., Blagojević B.D. and Savić S.R. (2010): MHD flow and heat transfer of two immiscible fluids between moving plates.– Transactions of the Canadian Society for Mechanical Engineering, vol.34, No.3-4, pp.351-372.
- [48] Nikodijević D., Milenković D. and Stamenković Z. (2011): MHD Couette two-fluid flow and heat transferrin presence of uniform inclined magnetic field.– Int. J. Heat and Mass Transfer. vol.47, No.12, pp.1525-1535.
- [49] Stamenković Z, Nikodijević D.D., Kocić M. and Petrović J.D. (2012): MHD f low and heat transfer of two immiscible fluids with induced magnetic field.– Therm. Sci. Int. Scientific. J., vol.16, No.2, pp.323-336.
- [50] Linga Raju T. and Naga Valli M. (2014): MHD two-layered unsteady fluid flow and heat transfer through a horizontal channel between parallel plates in a rotating system.– Int. J. Appl. Mech. Engg., vol.19, No.1, pp.97-121.
- [51] Mateen A. (2014):Transient magnetohydrodynamic flow of two immiscible fluids through a horizontal channel.– Int. J. Engg. Res., vol.3, No.1, pp.13-17.
- [52] Sharma P.R. and Kalpna S. (2014): Unsteady MHD two-fluid flow and heat transfer through a horizontal channel.– Int. J. Engg. Sci. Inv. Res. Develpment., vol.1, No.3, pp.65-72.
- [53] Umavathi J. C. and Anwar Beg O. (2020): Effect of thermophysical properties on heat transfer at the interface of two immiscible fluids in a vertical duct numerical study.– Int. J. Heat and Mass Transfer, vol.4, p.119613, https://doi.org/10.1016/j.ijheatmasstransfer.2020.119613.
- [54] Linga Raju T. and Gowrisankar Rao V. (2021): Effect of Hall currents on unsteady magnetohydrodynamic two ionized fluid flow and heat transfer in a channel.– Int. J. App. Mech. Engg., vol.26, No.2. pp.84-106.
- [55] Kalra G.L Kathuria S.N., Hosking R.J. and Lister G.G. (1970): Effect of Hall current and resistivity on the stability of a gas-liquid system.– J. Plasma. Phys., vol.4, pp.451-469.
- [56] Dunn P.F. (1980): Single-phase and two-phase magnetohydrodynamic pipe flow.– Int. Journal of Heat and Mass Transfer, vol.23, pp.373.
- [57] Lohrasbi J. and Sahai V. (1988): Magnetohydrodynamic heat transfer in two phase flow between parallel plates.– Appl. Sci. Res., vol.45, pp.53-66.
- [58] Malashetty M.S. and Leela V. (1992): Magnetohydrodynamic heat transfer in two phase flow.– Int. J. Eng. Sci., vol.30, pp.371-377.
- [59] Chamkha A.J. (1995): Hydromagnetic two-phase flow in a channel.– Int. J. Eng. Sci., vol.33, No.3, pp.437-446.
- [60] Abbey T.M. and Bestman A.R. (1995): Slip flow in a two-component plasma model with radiative heat transfer.– Int. J. Energy Research, vol.19, No.1, pp.1-6.
- [61] Umavathi J.C., Chamkha Ali J., Mateen A. and Al.-Mudhaf A. (2006): Oscillatory Hartmann two-fluid flow and heat transfer in a horizontal channel.– Int. J. Applied Mechanics and Engineering, vol.11, No.1, pp.155-178.
- [62] Tsuyoshi Inoue and Shu-Ichiro Inutsuka (2008): Studied two-fluid magneto hydrodynamic simulations of converging hi flows in the interstellar medium.– The Astrophysical J., vol.687, No.1, pp.303-310.
- [63] Linga Raju T, Neela Rao B. and Veeraiah P. (2015): MHD two-layered fluid slip-flow between parallel walls.– Int. J. Emer. Tre. Eng. D, vol.6, No.5, pp.132-148.
- [64] Abdul M. (2014): Transient magnetohydrodynamic flow of two immiscible fluid through a horizontal channel.– Int. J. Eng. Res., vol.3, No.1, pp.13-17.
- [65] Abbas Zaheer., Hasnain Jafor. and Sajid, M. (2016): MHD two-phase fluid flow and heat transfer with partial slip in an inclined channel.– Thermal Science, vol.20, No.5, pp.1435-1446.
- [66] Linga Raju T. (2019): MHD heat transfer two-ionized fluids flow between two parallel plates with Hall currents.– Results in Engineering, vol.4, 100043, Elsevier BV.
- [67] Mallikarjuna B., Subba Bhatta S.H.C.V. and Ramprasad S. (2021): Velocity and thermal slip effects on MHD convective radiative two-phase flows in an asymmetric non-uniform channel.– Propulsion and Power Research, vol.10, pp.169-179.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-daf1e7c6-7218-4482-aed2-65ab73f673b3