PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discrimination between stochastic dynamics patterns of ambient noises (Case study for Oni seismic station)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Investigation of complex dynamics of ambient seismic noise remains as an important scientific research challenge. In this work we investigated dynamical features of the ambient noises at Oni seismic station, Georgia. We used stochastic model reconstruction method from measured data sets. Seismic records for different time periods around Oni seismic station have been analysed. It was shown that the dynamics of fluctuations of seismic noise vertical component undergoes essential changes for considered time period from 2005 to 2012. These changes are more noticeable for time periods of preparation and aftershock activity of strong M6.0 earthquake occurred in 2009 in the vicinity of Oni seismic station.
Czasopismo
Rocznik
Strony
1659--1676
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
  • M. Nodia Institute of Geophysics, Georgian Academy of Science, Tbilisi, Georgia
  • Ilia State University, Tbilisi, Georgia
autor
  • M. Nodia Institute of Geophysics, Georgian Academy of Science, Tbilisi, Georgia
  • Ilia State University, Tbilisi, Georgia
autor
  • M. Nodia Institute of Geophysics, Georgian Academy of Science, Tbilisi, Georgia
  • Ilia State University, Tbilisi, Georgia
autor
  • Ilia State University, Tbilisi, Georgia
Bibliografia
  • 1. Chelidze, T., O. Lursmanashvili, T. Matcharashvili, and M. Devidze (2006), Triggering and synchronization of stick slip: Waiting times and frequencyenergy distribution, Tectonophysics 424,3-4, 139-155, DOI: 10.1016/j.tecto.2006.03.031.
  • 2. Correig, A.M., M. Urquizu, J. Vila, and R. Macià (2007), Microseism activity and equilibrium fluctuations. In: A.A. Tsonis and J.B. Elsner (eds.), Nonlinear Dynamics in Geosciences, Springer, New York, 69-85, DOI: 10.1007/978-0-387-34918-3_5.
  • 3. Czechowski, Z., and M. Białecki (2012), Ito equations out of domino cellular automaton with efficiency parameters, Acta Geophys. 60,3, 846-857, DOI: 10.2478/s11600-012-0021-0.
  • 4. Czechowski, Z., and A. Rozmarynowska (2008), The importance of the privilege for appearance of inverse-power solutions in Ito equations, Physica A 387,22, 5403-5416, DOI: 10.1016/j.physa.2008.06.007.
  • 5. Czechowski, Z., and L. Telesca (2011), The construction of an Ito model for geoelectrical signals, Physica A 390,13, 2511-2519, DOI: 10.1016/j.physa.2011.02.049.
  • 6. Friedrich, R., S. Siegert, J. Peinke, S. Lück, M. Siefert, M. Lindemann, J. Raethjen, G. Deuschl, and G. Pfister (2000), Extracting model equations from experimental data, Phys. Lett. A 271,3, 217-222, DOI: 10.1016/S0375-9601(00)00334-0.
  • 7. Gottschall, J., and J. Peinke (2008), On the definition and handling of different drift and diffusion estimates, New J. Phys. 10, 083034, DOI: 10.1088/1367-2630/10/8/083034.
  • 8. Kapiris, P.G., K.A. Eftaxias, K.D. Nomikos, J. Polygiannakis, E. Dologlou, G.T. Balasis, N.G. Bogris, A.S. Peratzakis, and V.E. Hadjicontis (2003), Evolving towards a critical point: A possible electromagnetic way in which the critical regime is reached as the rupture approaches, Nonlinear Proc. Geophys. 10,6, 511-524, DOI: 10.5194/npg-10-511-2003.
  • 9. Karamanos, K., D. Dakopoulos, K. Aloupis, A. Peratzakis, L. Athanasopoulou, S. Nikolopoulos, P. Kapiris, and K. Eftaxias (2006), Preseismic electromagnetic signals in terms of complexity, Phys. Rev. E 74,1, 016104, DOI: 10.1103/PhysRevE.74.016104.
  • 10. Langner, M., J. Peinke, F. Flemisch, M. Baumann, and D. Beckmann (2010), Drift and diffusion based models of driver behavior, Eur. Phys. J. B 76,1, 99-107, DOI: 10.1140/epjb/e2010-00148-8.
  • 11. Lapenna, V., M. Macchiato, and L. Telesca (1998), 1/fβ fluctuations and selfsimilarity in earthquake dynamics: observational evidences in southern Italy, Phys. Earth Planet. In. 106,1-2, 115-127, DOI: 10.1016/S0031-9201(97)00080-0.
  • 12. Matcharashvili, T., T. Chelidze, and Z. Javakhishvili (2000), Nonlinear analysis of magnitude and interevent time interval sequences for earthquakes of Caucasian region, Nonlinear Proc. Geophys. 7,1/2, 9-20, DOI: 10.5194/npg-7-9-2000.
  • 13. Matcharashvili, T., T. Chelidze, Z. Javakhishvili, N. Jorjiashvili, and N. Zhukova (2012), Scaling features of ambient noise at different levels of local seismic activity: A case study for the Oni seismic station, Acta Geophys. 60,3, 809-832, 10.2478/s11600-012-0006-z.
  • 14. Padhy, S. (2004), Rescaled range fractal analysis of a seismogram for identification of signals from an earthquake, Curr. Sci. India 87,5, 637-641.
  • 15. Renner, Ch., J. Peinke, and R. Friedrich (2001), Evidence of Markov properties of high frequency exchange rate data, Physica A 298,3-4, 499-520, DOI: 10.1016/S0378-4371(01)00269-2.
  • 16. Rundle, J.B., D.L. Turcotte, and W. Klein (eds.) (2000), Geocomplexity and the Physics of Earthquakes, Geophys. Monogr. Ser., Vol. 120, American Geophysical Union, Washington, D.C., 284 pp., DOI: 10.1029/GM120.
  • 17. SESAME (2004), Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations — measurements, processing and interpretation, SESAME European research project WP12 — D23.12, European Commission — Research General Directorate, Project No. EVG1-CT-2000-0026 SESAME.
  • 18. Siefert, M., A. Kittel, R. Friedrich, and J. Peinke (2003), On a quantitative method to analyze dynamical and measurement noise, Europhys. Lett. 61,4, 466-472, DOI: 10.1209/epl/i2003-00152-9.
  • 19. Siegert, S., R. Friedrich, and J. Peinke (1998), Analysis of data sets of stochastic systems, Phys. Lett. A 243,5-6, 275-280, DOI: 10.1016/S0375-9601(98)00283-7.
  • 20. Telesca, L. (2010), Analysis of Italian seismicity by using a nonextensive approach, Tectonophysics 494,1-2, 155-162, DOI: 10.1016/j.tecto.2010.09.012.
  • 21. Telesca, L., and Z. Czechowski (2012), Discriminating geoelectrical signals measured in seismic and aseismic areas by using Ito models, Physica A 391,3, 809-818, DOI: 10.1016/j.physa.2011.09.006.
  • 22. Telesca, L., and V. Lapenna (2006), Measuring multifractality in seismic sequences, Tectonophysics 423,1-4, 115-123, DOI: 10.1016/j.tecto.2006.03.023.
  • 23. Telesca, L., and M. Lovallo (2012), Analysis of seismic sequences by using the method of visibility graph, Europhys. Lett. 97,5, 50002, DOI: 10.1209/0295-5075/97/50002.
  • 24. Telesca, L., T. Matcharasvili, T. Chelidze, and N. Zhukova (2012), Relationship between seismicity and water level in the Enguri high dam area (Georgia) using the singular spectrum analysis, Nat. Hazards Earth Syst. Sci. 12,8, 2479-2485, DOI: 10.5194/nhess-12-2479-2012.
  • 25. Webb, S.C. (1998), Broadband seismology and noise under the ocean, Rev. Geophys. 36,1, 105-142, DOI: 10.1029/97RG02287.
  • 26. Yulmetyev, R., F. Gafarov, P. Hänggi, R. Nigmatullin, and S. Kayumov (2001), Possibility between earthquake and explosion seismogram differentiation by discrete stochastic non-Markov processes and local Hurst exponent analysis, Phys. Rev. E 64,6, 066132, DOI: 10.1103/PhysRevE.64.066132.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-daf1e3a0-d0e5-44dc-bf55-d4dbda6a0693
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.