PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on Earth rotation and geodynamics in Poland in 2019–2022

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper summarizes the activity of the chosen Polish geodetic research teams in 2019–2022 in the fields of the Earth rotation and geodynamics. This publication has been prepared for the needs of the presentation of Polish scientists’ activities on the 28th International Union of Geodesy and Geodynamics General Assembly, Berlin, Germany. The part concerning Earth rotation is mostly focused on the estimation of the geophysical excitation of polar motion using data from Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) missions, and on the improvement of the determination of Earth rotation parameters based on the Satellite Laser Ranging (SLR), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), and Global Navigation Satellite System (GNSS) satellite techniques. The part concerning geodynamics is focused on geodetic time series analysis for geodynamical purposes and monitoring of the vertical ground movements induced by mass transport within the Earth’s system, monitoring of the crustal movements using GNSS and newly applied Interferometric Synthetic Aperture Radar (InSAR), discussing the changes of the landslides and its monitoring using geodetic methods as well as investigations of seismic events and sea-level changes with geodetic methods. Finally, the recent research activities carried out by Polish scientists in the international projects is presented.
Rocznik
Strony
art. no. e41, 2023
Opis fizyczny
Bibliogr. 133 poz.
Twórcy
  • Military University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
  • Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Geodesy and Cartography, Centre of Geodesy and Geodynamics, Warsaw, Poland
  • Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • 1. Araszkiewicz, A., Calka, B., Kiliszek, D. et al. (2022). Geoportal Centrum Infrastruktury Badawczej Danych GNSS. Roczniki Geomatyki, XX, 1(96), 7–16 (in Polish).
  • 2. Bala, J., Dwornik, M., and Franczyk, A. (2021). Automatic subsidence troughs detection in SAR interferograms using circlet transform. Sensors, 21, 1706. DOI: 10.3390/s21051706.
  • 3. Baselga S., and Najder J. (2021). Automated detection of discontinuities in EUREF permanent GNSS network stations due to earthquake events. Survey Rev., 54(386), 420–428. DOI: 10.1080/00396265. 2021.1964230.
  • 4. Bazanowski, M., Szostak-Chrzanowski, A., and Chrzanowski, A. (2019). Determination of GPS session duration in ground deformation surveys in mining areas. Sustainability, 11, 6127. DOI: 10.3390/su11216127.
  • 5. Becek, K., Ibrahim, K., Bayik, C. et al. (2021). Identifying Land Subsidence Using Global Digital Elevation Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 8989–8998. DOI: 10.1109/JS-TARS.2021.3110438.
  • 6. Blachowski, J., Kopec, A., Milczarek, W. et al. (2019). Evolution of Secondary Deformations Captured by Satellite Radar Interferometry: Case Study of an Abandoned Coal Basin in SW Poland. Sustainability, 11, 884. DOI: 10.3390/su11030884.
  • 7. Blachowski, J., and Buczynska, A. (2020). Analysis of Rock Raw Materials Transport and its Implications for Regional Development and Planning. Case Study of Lower Silesia (Poland). Sustainability, 12(8), 3165. DOI: 10.3390/su12083165.
  • 8. Blachowski, J., Warchala, E., Kozma, J. et al. (2022). Geophysical Research of Secondary Deformations in the Post Mining Area of the Glaciotectonic Muskau Arch Geopark – Preliminary Results. Appl. Sci., 12(3), 1194. DOI: 10.3390/app12031194.
  • 9. Bogusz, J., Klos, A., and Pokonieczny, K. (2019). Optimal strategy of the GPS position time series analysis for the Post-Glacial Rebound investigation in Europe. Remote Sens., 11, 1209. DOI: 10.3390/rs11101209.
  • 10. Bury, G., Sosnica, K., Zajdel, R. et al. (2021a). Determination of precise Galileo orbits using combined GNSS and SLR observations. GPS Solutions, 25(11), 1–13. DOI: 10.1007/s10291-020-01045-3.
  • 11. Bury, G., Sosnica, K., Zajdel, R. et al. (2021b). Geodetic datum realization using SLR-GNSS co-location onboard Galileo and GLONASS. Journal of Geophysical Research – Solid Earth, 126(10), 1–23. DOI: 10.1029/2021JB022211.
  • 12. Cegla, A., Rohm, W., Lasota, E. et al. (2022). Detecting volcanic plume signatures on GNSS signal, Based on the 2014 Sakurajima Eruption. Adv. Space Res., 69(1), 292–307. DOI: 10.1016/j.asr.2021.08.034.
  • 13. Chrapkiewicz, K., Wilde-Piórko, M, Polkowski, M. et al. (2020). Reliable workflow for inversion of seismic receiver function and surface wave dispersion data: a “13 BB Star” case study. J. Seismol., 24(1), 101–120. DOI: 10.1007/s10950-019-09888-1.
  • 14. Drozdzewski, M., Sosnica, K., Zus, F. et al. (2019). Troposphere delay modeling with horizontal gradients for satellite laser ranging. J. Geod., 93(10), 1853–1866. DOI: 10.1007/s00190-019-01287-1.
  • 15. Dwornik, M., Porzycka-Strzelczyk, S., Strzelczyk, J. et al. (2021). Automatic Detection of Subsidence Troughs in SAR Interferograms Using Mathematical Morphology. Energies, 14(22), 7785. DOI: 10.3390/en14227785.
  • 16. Fan, J., Wang, Q., Liu, G. et al. (2019). Monitoring and Analyzing Mountain Glacier Surface Movement Using SAR Data and a Terrestrial Laser Scanner: A Case Study of the Himalayas North Slope Glacier Area. Remote Sens., 11(6), 625. DOI: 10.3390/rs11060625.
  • 17. Fenoglio, L., Dinardo, S., Uebbing, B. et al. (2020). Advances in NE-Atlantic coastal sea level change monitoring by Delay Doppler altimetry. Adv. Space Res., 68(2), 571–592. DOI: 10.1016/j.asr.2020.10.041.
  • 18. Ferrandiz, J.M., Gross, R.S., Escapa, A. et al. (2020). Report of the IAU/IAG Joint Working Group on Theory of Earth Rotation and Validation, IAG Symposia. DOI: 10.1007/1345_2020_103.
  • 19. Foumelis, M., Papazachos, C., Papadimitriou, E. et al. (2021). On rapid multidisciplinary response aspects for Samos 2020 M7.0 earthquake. Acta Geophys., 69, 1025–1048. DOI: 10.1007/s11600-021-00578-6.
  • 20. Gebauer, A., Tercjak, M., Schreiber, K.U. et al. (2020). Reconstruction of the Instantaneous Earth Rotation Vector with Sub-Arcsecond Resolution Using a Large Scale Ring Laser Array. Physic. Rev. Lett., 125:033605. DOI: 10.1103/PhysRevLett.125.033605.
  • 21. Glowacki, T., and Kasza, D. (2021). Assessment of morphology changes of the end moraine of the Werenskiold Glacier (SW Spitsbergen) using active and passive remote sensing techniques. Remote Sens., 13(11), 2134. DOI: 10.3390/rs13112134.
  • 22. Godah, W. (2019). IGiK-TVGMF: A MATLAB package for computing and analysing temporal variations of gravity/mass functionals from GRACE satellite based global geopotential models. Comput. Geosci., 123, 47–58. DOI: 10.1016/j.cageo.2018.11.008.
  • 23. Godah, W., Szelachowska, M., Ray, J.D. et al. (2020a). Comparison of vertical deformations of the Earth’s surface obtained using GRACE-based GGMs and GNSS data – A case study of Poland. Acta Geodyn. Geomater., 17, 169–176. DOI: 10.13168/AGG.2020.0012.
  • 24. Godah, W., Szelachowska, M., Krynski, J. et al. (2020b). Assessment of Temporal Variations of Orthometric/Normal Heights Induced by Hydrological Mass Variations over Large River Basins Using GRACE Mission Data. Remote Sens., 12(18), 3070. DOI: 10.3390/rs12183070.
  • 25. Gruber, T., Ågren, J., Angermann, D. et al. (2020). Geodetic SAR for Height System Unification and Sea Level Research – Observation Concept and Preliminary Results in the Baltic Sea. Remote Sens., 12, 3747. DOI: 10.3390/rs12223747.
  • 26. Gruber, T., Ågren, J., Angermann, D. et al. (2022). Geodetic SAR for Height System Unification and Sea Level Research – Results in the Baltic Sea Test Network. Remote Sens., 14, 3250. DOI: 10.3390/rs14143250.
  • 27. Grzempowski, P., Badura, J., Milczarek W. et al. (2020). Determination of the Long-Term Ground Surface Displacements Using a PSI Technique – Case Study on Wroclaw (Poland). Appl. Sci., 10(10), 3343. DOI: 10.3390/app10103343.
  • 28. Guzy, A., and Malinowska, A.A. (2020). State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water, 12, 2051. DOI: 10.3390/w12072051.
  • 29. Hejmanowski, R., Malinowska, A.A., Witkowski, W.T. et al. (2019). An analysis applying InSAR of subsidence caused by nearby mining-induced earthquakes. Geosci., 9, 490. DOI: 10.3390/geosciences9120490.
  • 30. Ilieva, M., Polanin, P., Borkowski, A. et al. (2019a). Mining Deformation Life Cycle in the Light of InSAR and Deformation Models. Remote Sens., 11(7), 745. DOI: 10.3390/rs11070745.
  • 31. Ilieva, M., Rudzinski, L., Pawluszek-Filipiak, K. et al. (2019b). Combined Study of a Significant Mine Collapse Based on Seismological and Geodetic Data – 29 January 2019, Rudna Mine, Poland. Remote Sens., 12(10). DOI: 10.3390/rs12101570.
  • 32. Jagoda, M., and Rutkowska, M. (2019a). Determination of the local tidal parameters for the borowiec station using satellite laser ranging data. Studia Geophys. et Geod., 63, 509–519. DOI: 10.1007/s11200-019-0726-5.
  • 33. Jagoda, M., and Rutkowska, M. (2019b). Estimation of the local tidal parameters h2, l2 for the Riga satellite laser ranging station based on LAGEOS data. Estonian J. Earth Sci., 68(4), 199–205. DOI: 10.3176/earth.2019.14.
  • 34. Jagoda, M., Rutkowska, M., Obuchovski, R. et al. (2019). Tidal Parameters as a Tool for the Determination of the Coordinates of the SLR Stations. Artificial Satellites, Journal of Planetary Geodesy, 54(4), 129–135. DOI: 10.2478/arsa-2019-0010.
  • 35. Jagoda, M., and Rutkowska, M. (2020a). An analysis of the Eurasian tectonic plate motion parameters based on GNSS stations positions in ITRF2014. Sensors, 20(21), 6065. DOI: 10.3390/s20216065.
  • 36. Jagoda, M., and Rutkowska, M. (2020b). Use of VLBI measurement technique for determination of motion parameters of the tectonic plates. Metrol. Meas. Syst., 27(1), 151–165. DOI: 10.24425/mms.2020.131722.
  • 37. Jagoda, M., Rutkowska, M., Suchocki, C. et al. (2020a). Determination of the tectonic plates motion parameters based on SLR, DORIS and VLBI stations positions. J. Appl. Geod., 14(2), 121–131. DOI: 10.1515/jag-2019-0053.
  • 38. Jagoda, M., Rutkowska, M., Lejba, P. et al. (2020b). Satellite Laser Ranging for retrieval of the local values of the Love h2 and Shida l2 numbers for the Australian ILRS stations. Sensors, 20(23), 6851. DOI: 10.3390/s20236851.
  • 39. Jagoda, M. (2021). Determination of motion parameters of selected major tectonic plates based on GNSS station positions and velocities in the ITRF2014. Sensors, 21(16), 5342. DOI: 10.3390/s21165342.
  • 40. Jarosinski, M., Araszkiewicz, A., Bobek, K. et al. (2022). Contemporary state of stress in a stable plate interior (northern Poland): The integration of satellite geodesy, borehole and seismological data. Tectonophys., 831, 229336. DOI: 10.1016/j.tecto.2022.229336.
  • 41. Jozkow, G., Walicka, A., and Borkowski, A. (2021). Monitoring terrain deformations caused by underground mining using UAV data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 737–744. DOI: 10.5194/isprs-archives-XLIII-B2-2021-737-2021.
  • 42. Kaczmarek, A. (2019). Influence of Geophysical Signals on Coordinate Variations GNSS Permanent Stations in Central Europe. Artificial Satellites, Journal of Planetary Geodesy, 54(3), 57–71. DOI: 10.2478/arsa-2019-0006.
  • 43. Kaczorowski, M., Kasza, D., Zdunek, R. et al. (2019). Time dependencies between tectonic activity of Świebodzice Depression (SW Poland) and seismic activity in Poland and Czech mining regions. In E3S Web of Conferences, 105, 02001. DOI: 10.1051/e3sconf/201910502001.
  • 44. Kaczorowski, M., Kasza, D., Zdunek, R. et al. (2021). Time distribution of strong seismic events in the Fore-Sudetic Monocline in context of signals registered by water-tube gauges in Ksiaz Geodynamic Laboratory. Sensors, 21(5), 1603. DOI: 10.3390/s21051603.
  • 45. Kaczorowski, M., Kasza, D., Zdunek, R., Wronowski, R. (2022). Investigation of signals of the range 10-3 – 10-4 Hz registered by water-tube tiltmeters in the Underground Geodynamic Laboratory in Ksiaz (SW Poland). Artificial Satellites, Journal of Planetary Geodesy, 57(4), 210–236. DOI: 10.2478/arsa-2022-0011.
  • 46. Karkowska, K., and Wilde-Piorko, M. (2022). Determination of the Earth’s structure based on intermediate-period surface wave recordings of tidal gravimeters: A case study. Earth Planets Space, 74(1), 1–14. DOI: 10.1186/s40623-022-01712-4.
  • 47. Karkowska, K., Wilde-Piorko M., and Dykowski, P. (2022). Analysis of earthquakes recordings of tidal gravimeters in the period range of 10–1000 s. Acta Geodynyn. Geomater., 19(1), 79–92. DOI: 10.13168/AGG.2021.0043.
  • 48. Klos, A., Kusche, J., Fenoglio-Marc, L. et al. (2019). Introducing a vertical land motion model for improving estimates of sea level rates derived from tide gauge records affected by earthquakes. GPS Solut., 23, 102. DOI: 10.1007/s10291-019-0896-1.
  • 49. Klos, A., Bogusz, J., Bos, M.S. et al. (2020a). Modelling the GNSS time series: different approaches to extract seasonal signals. In: Montillet J.-P. and Bos M. (eds.), Geodetic Time Series Analysis in Earth Sciences. Springer: Geophysics, 211–237. DOI: 10.1007/978-3-030-21718-1_7.
  • 50. Klos, A., Karegar, M.A., Kusche, J. et al.. (2020b). Quantifying Noise in Daily GPS Height Time Series: Harmonic Function Versus GRACE-Assimilating Modeling Approaches. IEEE Geosci. Remote Sens. Lett., 18(4), 627-631. DOI: 10.1109/LGRS.2020.2983045.
  • 51. Klos, A., Dobslaw, H., Dill, R. et al. (2021). Identifying the sensitivity of GPS to non-tidal loadings at various time resolutions: examining vertical displacements from continental Eurasia. GPS Solut., 25, 89. DOI: 10.1007/s10291-021-01135-w.
  • 52. Kosek, W., Popinski, W., Wnek, A. et al. (2020). Analysis of Systematic Errors in Geocenter Coordinates Determined From GNSS, SLR, DORIS, and GRACE. Pure Appl. Geophys., 177, 867–888. DOI: 10.1007/s00024-019-02355-5.
  • 53. Kowalczyk, K. (2019). Changes In Mean Sea Level On The Polish Coast Of The Baltic Sea Based On Tide Gauge Data From The Years 1811-2015. Acta Geodyn. et Geomater., 16(2), 195–210. DOI: 10.13168/AGG.2019.0016.
  • 54. Kowalczyk, K., Pajak, K., and Naumowicz, B. (2019). Modern vertical crustal movements of the Southern Baltic coast from tide gauge, satellite altimetry and GNSS observations. Acta Geodyn. et Geomater., 16(3), 245–253. DOI: 10.13168/AGG.2019.0020.
  • 55. Kowalczyk, K., Kowalczyk, A.M., and Chojka, A. (2020). Modeling of the vertical movements of the earth’s crust in Poland with the co-kriging method based on various sources of data. Appl. Sci., 10(9), 3004. DOI: 10.3390/app10093004.
  • 56. Kowalczyk, K., Kowalczyk, A.M., and Rapinski, J. (2021a). Identification of common points in hybrid geodetic networks to determine vertical movements of the Earth’s crust. J. Appl. Geod., 15(2), 153–167. DOI: 10.1515/jag-2021-0002.
  • 57. Kowalczyk, K., Pajak, K., Wieczorek, B. et al. (2021b). An Analysis of Vertical Crustal Movements along the European Coast from Satellite Altimetry, Tide Gauge, GNSS and Radar Interferometry. Remote Sens., 13(11), 2173. DOI: 10.3390/rs13112173.
  • 58. Kowalski, A., Kasza, D., and Wajs, J. (2019). Structural control of mass movements on slopes formed of magmatic and metamorphic rocks: the case study of Wielisławka Mt. (SW Poland, Sudetes Mts.). Geological Quarterly, 63(3), 460–477. DOI: 10.7306/gq.1482.
  • 59. Kudlacik, I., Kaplon, J., Bosy, J. et al. (2019). Seismic phenomena in the light of high-rate GPS Precise Point Positioning results. Acta Geodyn. et Geomater., 16(1(193)), 99–112. DOI: 10.13168/AGG.2019.0008.
  • 60. Kudlacik, I., Kaplon, J., Lizurek, G. et al. (2021). High-rate GPS positioning for tracing anthropogenic seismic activity: The 29 January 2019 mining tremor in Legnica-Glogów Copper District, Poland. Measurement, 168, 108396. DOI: 10.1016/j.measurement.2020.108396.
  • 61. Kur, T., Dobslaw, H., Sliwinska, J. et al. (2022). Evaluation of select-ed short term predictions of UT1 UTC and LOD collected in the second earth orientation parameters prediction comparison campaign. Earth Planets Space, 74(191). DOI: 10.1186/s40623-022-01753-9.
  • 62. Ligas, M., Banas, M., and Szafarczyk, A. (2019). A method for local approximation of a planar deformation field. Rep. Geod. Geoinform., 108(1), 1–8. DOI: 10.2478/rgg-2019-0007.
  • 63. Liu, G., Guo, H., Perski, Z. et al. (2019). Landslide movement monitoring with ALOS-2 SAR data. IOP Conf. Ser.: Earth Environ. Sci., 227, 062015. DOI: 10.1088/1755-1315/227/6/062015.
  • 64. Lyszkowicz, A., and Bernatowicz, A. (2019). Geocentric Baltic Sea level changes along the southern coastline. Adv. Space Res., 64, 1807–1815. DOI: 10.1016/j.asr.2019.07.040.
  • 65. Lyszkowicz, A., Pelc-Mieczkowska, R., Bernatowicz, A. et al. (2021a). First results of time series analysis of the permanent GNSS observations at Polish EPN stations using GipsyX software. Artificial Satellites, Journal of Planetary Geodesy, 56, (3). DOI: 10.2478/arsa-2021-0008.
  • 66. Lyszkowicz A., Nastula J., Zielinski J.B., Birylo M. (2021b). A New Model of Quasigeoid for the Baltic Sea Area. Remote Sensing, 13, 2580. DOI: 10.3390/rs13132580.
  • 67. Maciuk, K. (2021). GNSS monitoring natural and anthropogenic phenomena. In: George p. Petropoulos, Prashant K. Srivastava (eds.), GPS and GNSS Technology in Geosciences. Elsevier, 177–197, ISBN 9780128186176. DOI: 10.1016/B978-0-12-818617-6.00007-X.
  • 68. Maciuk, K., Peska-Siwik, A., El-Mowafy, A. et al. (2021). Crustal Deformation Across and beyond Central Europe and Its Impact on Land Boundaries. Resources, 10, 15. DOI: 10.3390/resources10020015.
  • 69. Malinowska, A.A., Witkowski, W.T., Hejmanowski, R. et al. (2019). Sinkhole Occurrence Monitoring Over Shallow Abandoned Coal Mines with Satellite-Based Persistent Scatterer Interferometry. Eng. Geo., 262, 105336. DOI: 10.1016/j.enggeo.2019.105336.
  • 70. Malinowska, A.A., Witkowski, W.T., Guzy, A. et al. (2020a). Satellite-based monitoring and modeling of ground movements caused by water rebound. Remote Sens., 12, 1786. DOI: 10.3390/rs12111786.
  • 71. Malinowska A.A., Hejmanowski, R., and Dai, H. (2020b). Ground Movements Modeling Applying Adjusted Influence Function. Int. J. Mining Sci. Tech., 30, 243–249. DOI: 10.1016.j.ijmst.2020.01.007.
  • 72. Malkin, Z., Gross, R., McCarthy, D. et al. (2019). On the eve of the 100th anniversary of IAU Commission 19/A2 “Rotation of the Earth”. Under One Sky: The IAU Centenary Symposium Proc. IAU Symposium No. 349, C. Sterken, J. Hearnshaw and D. Valls-Gabaud (eds.), 325–331. DOI: 10.1017/S1743921319000462.
  • 73. Michalczak, M., and Ligas, M. (2021). Kriging-based prediction of the Earth’s pole coordinates. J. Appl. Geod., 15(3), 233–241. DOI: 10.1515/jag-2021-0007.
  • 74. Michalczak, M., and Ligas, M. (2022). The (ultra) short term prediction of length-of-day us-ing kriging. Adv. Space Res., 70(3), 610–620. DOI: 10.1016/ j.asr.2022.05.007.
  • 75. Michalczak, M., Ligas, M., and Kudrys, J. (2022). Prediction of Earth Rotation Parameters with the use of Rapid Products from IGS, Code and GFZ Data Centres Using Arima and Kriging – A Comparison. Artificial Satellites, Journal of Planetary Geodesy, 57(s1), 275–289. DOI: 10.2478/ arsa-2022-0024.
  • 76. Milczarek, W. (2019a). Application of a small baseline subset time series method with atmospheric correction in monitoring results of mining activity on ground surface and in detecting induced seismic events. Remote Sens., 11, 1008. DOI: 10.3390/rs11091008.
  • 77. Milczarek, W. (2019b). Investigation of post inducted seismic deformation of the 2016 MW 4.2 Tarnowek Poland mining tremor based on DinSAR and SBAS method. Acta Geodyn. et Geomater., 16(2), 183–193. DOI: 10.13168/AGG.2019.0015.
  • 78. Mutke, G., Kotyrba, A., Lurka, A. et al. (2019). Upper Silesian Geophysical Observation System – A unit of the EPOS project. J. Sustain. Min., 18(4), 198–20. DOI: 10.1016/j.jsm.2019.07.005.
  • 79. Nastula, J., Winska, M., Sliwinska, J. et al. (2019). Hydrological signals in polar motion excitation – Evidence after fifteen years of the GRACE mission. J. Geodyn., 124, 119–132. DOI: 10.1016/j.jog.2019.01.014.
  • 80. Nastula, J., and Sliwinska, J. (2020). Prograde and Retrograde Terms of Gravimetric Polar Motion Excitation Estimates from the GRACE Monthly Gravity Field Models. Remote Sensing, 12(1), 1–29. DOI: 10.3390/rs12010138.
  • 81. Nastula, J., Chin, T.M., Gross, R. et al. (2020). Smoothing and pre-dicting celestial pole offsets using a Kalman filter and smoother. J. Geod., 94(3). DOI: 10.1007/s00190-020-01349-9.
  • 82. Nastula, J., Sliwinska, J., Kur T. et al. (2022). Preliminary study on hydrological angular momentum determined from CMIP6 historical simulations. Earth Planets Space, 74, 1–26. DOI: 10.1186/s40623-022-01636-z.
  • 83. Nistor, S., Suba, N.-S., El-Mowafy, A. et al. (2021). Implication between Geophysical Events and the Variation of Seasonal Signal Determined in GNSS Position Time Series. Remote Sens., 13, 3478. DOI: 10.3390/rs13173478.
  • 84. Owczarz, K., and Blachowski, J. (2020a). Application of DInSAR and Spatial Statistics Methods in Analysis of Surface Displacements Caused by Induced Tremors. Appl. Sci., 10, 7660. DOI: 10.3390/app10217660.
  • 85. Owczarz, K., and Blachowski, J. (2020b). Analysis of the geometry of surface deformations caused by induced tremors in the area of underground copper mining. ISPRS Ann. Photogramm. Remote Sens. Spatial Inform. Sci., V-3-2020, 149–156. DOI: 10.5194/isprs-annals-V-3-2020-149-2020.
  • 86. Pajak, K., and Kowalczyk, K. (2019). A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data. Adv. Space Res., 63, 1768–1780. DOI: 10.1016/j.asr.2018.11.022.
  • 87. Pajak, K., Kowalczyk, K., Kaminski, J. et al. (2021). Studying the Sensitivity of Satellite Altimetry, Tide Gauge and GNSS Observations to Changes in Vertical Displacements. Geomat. Environ. Eng., 15(4), 45–58. DOI: 10.7494/geom.2021.15.4.45.
  • 88. Pawluszek, K. (2019). Landslide features identification and morphology investigation using high-resolution DEM derivatives. Nat. Hazards, 96, 311–330. DOI: 10.1007/s11069-018-3543-1.
  • 89. Pawluszek, K., Marczak, S., Borkowski, A. et al. (2019). Multi-Aspect Analysis of Object-Oriented Landslide Detection Based on an Extended Set of LiDAR-Derived Terrain Features. ISPRS Int. J. Geo-Inform., 8(8), 321. DOI: 10.3390/ijgi8080321.
  • 90. Pawluszek-Filipiak, K., and Borkowski, A. (2020a). Comparison of PSI and DInSAR approach for the subsidence monitoring caused by coal mining exploitation. ISPRS Archiv. Photogramm., Remote Sens. Spatial Infor. Sci. (ISPRS Archives), XLIII-B3-2020, 333–337. DOI: 10.5194/isprs-archives-XLIII-B3-2020-333-2020.
  • 91. Pawluszek-Filipiak, K., and Borkowski, A. (2020b). Integration of DInSAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydultowy Mine in Poland. Remote Sens., 12(2), 242. DOI: 10.3390/rs12020242.
  • 92. Pawluszek-Filipiak, K., Orenczak, N., and Pasternak, M. (2020). Investigating the Effect of Cross-Modeling in Landslide Susceptibility Mapping. Appl. Sci., 10 (18), 6335. DOI: 10.3390/app10186335.
  • 93. Pawluszek-Filipiak, K., and Borkowski, A. (2021a). Monitoring mining-induced subsidence by integrating differential radar interferometry and persistent scatterer techniques. European J. Remote Sens., 54(S1), 18–30. DOI: 10.1080/22797254.2020.1759455.
  • 94. Pawluszek-Filipiak, K., and Borkowski, A. (2021b). Object-Oriented Automatic Landslide Detection from High Resolution Digital Elevation Model – Opportunities and Challenges Based on a Case Study in the Polish Carpathians. In: Guzzetti, F., Mihalić Arbanas, S., Reichenbach, P., Sassa, K., Bobrowsky, P.T., Takara, K. (eds.), Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction. Springer: Cham. DOI: 10.1007/978-3-030-60227-76.
  • 95. Pawluszek-Filipiak, K., and Borkowski, A. (2021c). Updating Landslide Activity State and Intensity by Means of Persistent Scatterer Interferometry. In: Guzzetti, F., Mihalić Arbanas, S., Reichenbach, P., Sassa, K., Bobrowsky, P.T., Takara, K. (eds,), Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction. Springer: Cham. DOI: 10.1007/978-3-030-60227-7_12.
  • 96. Pawluszek-Filipiak, K., and Borkowski, A. (2021d). Mining-induced tremors in the light of deformations estimated by satellite SAR interferometry in the Upper Silesian Coal Basin, Poland. Procedia Computer Science, 181, 685–692. DOI: 10.1016/j.procs.2021.01.219.
  • 97. Pawluszek-Filipiak, K., Borkowski, A., and Motagh, M. (2021). Multi-temporal landslide activity investigation by spaceborne SAR interferometry: The case study of the Polish Carpathians. Remote Sens. Applicat. Soc. Environ., 24, 100629. DOI: 10.1016/j.rsase.2021.100629.
  • 98. Paziewski, J., Kurpinski, G., Wielgosz, P. et al. (2020). Towards Galileo ¸ GPS seismology: Validation of high-rate GNSS based system for seismic events characterisation. Measurement, 166, 108236. DOI: 10.1016/j.measurement.2020.108236.
  • 99. Przylibski, T.A., Domin E., Gorecka J. et al. (2020). 222Rn concentration in groundwaters circulating in granitoid massifs of Poland. Water, 12(3), 748. DOI: 10.3390/w12030748.
  • 100. Przylucka, M., Kowalski, Z., and Perski, Z. (2022). Twenty years of coal mining-induced subsidence in the Upper Silesia in Poland identified using InSAR. Int. J. Coal Sci. Tech., 9, 86. DOI: 10.1007/s40789-022-00541-w.
  • 101. Ray, J.D., Vijayan, M.S.M., and Godah, W. (2021). Seasonal Horizontal Deformations Obtained Using GPS and GRACE Data: Case Study of North-East India and Nepal Himalaya. Acta Geod. Geophys., 56, 61–76. DOI: 10.1007/s40328-020-00331-3.
  • 102. Rosat, S., Boy, J.-P., Bogusz J. et al. (2020). Inter-Comparison of Ground Gravity and Vertical Height Measurements at Collocated IGETS Stations. In: Freymueller, J.T., Sánchez, L. (eds.), Beyond 100: The Next Century in Geodesy. International Association of Geodesy Symposia, 152, 113–120. DOI:10.1007/1345_2020_117.
  • 103. Rudzinski, L., Mirek, K., and Mirek J. (2019). Rapid ground deformation corresponding to a mining-induced seismic event followed by a massive collapse. Nat. Hazards, 96(1), 461–471. DOI: 10.1007/s11069-018-3552-0.
  • 104. Sliwinska, J., and Nastula, J. (2019). Determining and evaluating the hydrological signal in polar motion excitation from gravity field models obtained from kinematic orbits of LEO satellites. Remote Sens., 11(15), 1-19. DOI: 10.3390/rs11151784.
  • 105. Sliwinska, J., Nastula, J., Dobslaw H. et al.. (2020a). Evaluating gravimetric polar motion excitation estimates from the RL06 GRACE monthly-mean gravity field models. Remote Sens., 12(6), 1–29. DOI: 10.3390/rs12060930.
  • 106. Sliwinska, J., Winska, M., and Nastula J. (2020b). Preliminary estimation and validation of polar motion excitation from different types of the GRACE and GRACE Follow-On missions data. Remote Sens., 12(21), 1–28. DOI: 10.3390/rs12213490.
  • 107. Sliwinska, J., Nastula, J., and Winska, M. (2021a). Evaluation of hydrological and cryospheric angular momentum estimates based on GRACE, GRACE-FO and SLR data for their contri-butions to polar motion excitation. Earth Planets Space, 73(1). DOI: 10.1186/s40623-021-01393-5.
  • 108. Sliwinska, J., Winska, M., and Nastula, J. (2021b). Validation of GRACE and GRACE-FO Mascon Data for the Study of Polar Motion Excitation. Remote Sens., 13(6), 1–22. DOI: 10.3390/rs13061152.
  • 109. Sliwinska, J., Winska, M., and Nastula, J. (2022a). Exploiting the Combined GRACE/GRACE-FO Solutions to Determine Gravimetric Excitations of Polar Motion. Remote Sens., 14(24), 1–22. DOI: 10.3390/rs14246292.
  • 110. Sliwinska, J., Kur, T., Winska, M. et al.. (2022b). Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC): overview. Artificial Satellites, Journal of Planetary Geodesy, 57(S1), 237–253. DOI: 10.2478/arsa-2022-0021.
  • 111. Sliwinska, J. (2022). Estimating and validating the hydrological and cryospheric signal in polar motion excitation determined from observations of the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite missions. PhD Thesis, Space Research Centre PAS, Warsaw.
  • 112. Sopata, P., Stoch, T., Wojcik, A. et al. (2020). Land Surface Subsidence Due to Mining-Induced Tremors in the Upper Silesian Coal Basin (Poland) – Case Study. Remote Sens., 12(23), 3923. DOI: 10.3390/rs12233923.
  • 113. Sosnica, K., Bury, G., Zajdel, R. et al. (2019). Estimating global geodetic parameters using SLR observa tions to Galileo, GLONASS, Bei-Dou, GPS, and QZSS. Earth Planets Space, 71(20), 1–11. DOI: 10.1186/s40623-019-1000-3.
  • 114. Sousa, J.J., Liu, G., Fan, J. et al. (2021). Geohazards Monitoring and Assessment Using Multi-Source Earth Observation Techniques. Remote Sens., 13, 4269. DOI: 10.3390/rs13214269.
  • 115. Strugarek, D., Sosnica, K., Arnold, D. et al. (2019). Determination of Global Geodetic Parameters Using Satellite Laser Ranging Meas-urements to Sentinel-3 Satellites. Remote Sens., 11(19), 2282, 1–21. DOI: 10.3390/rs11192282.
  • 116. Szafarczyk, A. (2019a). Stages of geological documentation on the example of landslides located on the slopes of the dam reservoir “Swinna Poreba” (Poland). In IOP Conference Series: Earth and Environmental Science (Vol. 221, No. 1, p. 012037). IOP Publishing. DOI: 10.1088/1755-1315/221/1/012037.
  • 117. Szafarczyk, A. (2019b). Kinematics of mass phenomena on the example of an active landslide monitored using GPS and GBInSAR technology. J. Appl. Eng. Sci., 17(2), 107–115. DOI: 10.5937/jaes17-18748.
  • 118. Szafarczyk, A., Skaba, A., and Sokalla, K. (2019). Implementation of gyroscope measurements in underground mines; focus on the mine of ruch (unit) „Borynia” in the Jastrzębie Coal Company. Geoinformatica Polonica, 18, 113–120. DOI: 10.4467/21995923GP.19.009.11576.
  • 119. Szczerbowski, Z. (2019). High-energy seismic events in Legnica–Głogów Copper District in light of ASG-EUPOS data. Rep. Geod. Geoinform., 107(1), 25–40. DOI: 10.2478/rgg-2019-0004.
  • 120. Szczerbowski, Z. (2020). Irregularity of post mining deformations as indicator revealing effects of processes of unknown origin in area of Bochnia. Geoinformatica Polonica, 19, 7–18. DOI: 10.4467/21995923GP.20.008.13073.
  • 121. Szczerbowski, Z., and Gawalkiewicz, R. (2020). The apparent displacement method as a tool in leveling data processing applied for validated determination of ground deformation. Geoinformatica Polonica, 19, 95–105. DOI: 10.4467/21995923GP.20.009.13074.
  • 122. Szczerbowski, Z., and Niedbalski, Z. (2021). The Application of a Sonic Probe Extensometer for the Detection of Rock Salt Flow Field in Underground Convergence Monitoring. Sensors, 21(16), 5562. DOI: 10.3390/s21165562.
  • 123. Tercjak, M., Gebauer, A., Rajner, M. et al. (2020). On the Influence of Diurnal and Subdiurnal Signals in the Normal Vector on Large Ring Laser Gyroscope Observations. Pure Appl. Geophys., 177, 4217–4228. DOI: 10.1007/s00024-020-02484-2.
  • 124. Tercjak, M. (2021). Short period variations of Earth rotation from measurements made by Ring Laser Gyroscopes. PhD Thesis, Warsaw University of Technology, Faculty of Geodesy and Cartography.
  • 125. Wajs, J., Trybala, P., Gorniak-Zimroz, J. et al. (2021). Modern solution for fast and accurate inventorization of open-pit mines by the active remote sensing technique – case study of Mikoszów granite mine (Lower Silesia, SW Poland). Energies, 14(20), 6853. DOI: 10.3390/en14206853.
  • 126. Winska, M., and Sliwinska, J. (2019). Assessing hydrological signal in polar motion from observations and geophysical models. Studia Geophys. Geod., 63(1), 95–117. DOI: 10.1007/s11200-018-1028-z.
  • 127. Winska M. (2022). A comparative study of interannual oscillation models for determining geophysical polar motion excitations. Remote Sensing, 14(1), 147. DOI: 10.3390/rs14010147.
  • 128. Yu, H., Sosnica, K., and Shen, Y. (2021) Separation of Geophysical Signals in the LAGEOS Geocenter Motion based on Singular Spectrum Analysis. Geophys. J. Int., 225(3), 1755–1770. DOI: 10.1093/gji/ggab063.
  • 129. Zajdel, R., Sosnica, K., Dach, R. et al. (2019a). Network effects and handling of the geocenter motion in multi-GNSS processing. J. Geophys. Res. Solid Earth, 124(6), 5970–5989. DOI: 10.1029/2019JB017443.
  • 130. Zajdel, R., Sosnica, K., Drozdzewski, M. et al. (2019b). Impact of network constraining on the terrestrial reference frame realization based on SLR observations to LAGEOS. J. Geod., 93(11), 2293–2313. DOI: 10.1007/s00190-019-01307-0.
  • 131. Zajdel, R., Sosnica, K., Bury, G. et al. (2020). System-specific systematic errors in earth rotation parameters derived from GPS, GLONASS, and Galileo. GPS Solut., 24(74), 1–15. DOI: 10.1007/s10291-020-00989-w.
  • 132. Zajdel, R., Sosnica, K., Bury, G. et al. (2021a). Sub-daily polar motion from GPS, GLONASS, and Galileo. J. Geod., 95(3), 1–27. DOI: 10.1007/s00190-020-01453-w.
  • 133. Zajdel, R., Sosnica, K., and Bury, G. (2021b). Geocenter coordinates derived from multi-GNSS: a look into the role of solar radiation pressure modeling. GPS Solut., 25, 1. DOI: 10.1007/s10291-020-01037-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-daed3881-8d1f-4a05-9eda-28de2d083dd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.