PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study on strain wave propagation and explosion resistance mechanism of rubber-cement composite plate structure under central explosion loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rubber-cement composites (RCC) is an environmentally friendly, green, and sustainable cementbased energy-absorbing materials. To study the dynamic response characteristics of RCC under explosion shock, the central explosion tests of RCC plate specimens were carried out by using the two-dimensional plate blasting (TDPB) test system. In the aspect of strain wave propagation, the characteristics and laws of explosive strain wave propagation in RCC plate structure were analyzed. In terms of damage characteristics, the macro-damage modes of RCC plate specimens under central explosion were analyzed, and the formation and propagation mechanisms of radial explosion growth cracks and the formation mechanism of central annular spalling were revealed. In terms of explosion resistance characteristics, combined with the meso-fracture morphology of RCC, the synergistic characteristics of mechanics and energy dissipation among cement mortar matrix, rubber particles, and pore structure were analyzed from the meso-level, and the explosion resistance mechanism of RCC plate structure was further revealed. RCC effectively combined the explosion resistance concepts of “coupling rigidity with flexibility” and “overcoming rigidity by flexibility”, showing excellent explosion resistance ability. Finally, in view of the key scientific problem existing in RCC, the scientific and effective solution was discussed deeply, and the development method and research directions of the new RCC were further prospected.
Rocznik
Strony
173--185
Opis fizyczny
Bibliogr. 22 poz., il., tab.
Twórcy
  • School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, China
  • Anhui Hongchang New Materials Co., Ltd., Huaibei, China
autor
  • School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, China
  • Anhui Hongchang New Materials Co., Ltd., Huaibei, China
autor
  • School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, China
Bibliografia
  • [1] H. Zhou, H. Ren, X. Wu, Z. Yi, K. Huang, C. Mu, and H. Wang, “A review of sacrificial claddings in multilayer protective structure”, Explosion and Shock Waves, vol. 42, no. 11, pp. 3-28, 2022, doi: 10.11883/bzycj-2022-0280.
  • [2] A. Grincova, M. Andrejiova, and D. Marasova, “Failure analysis of the impact resistance of protective rubber panels”, Engineering Failure Analysis, vol. 139, 2022, doi: 10.1016/j.engfailanal.2022.106481.
  • [3] S. Mei, Q. Sheng, Z. Cui, and X. Mei, “Experimental study on energy absorption property of viscoelasticity damping layer”, Chinese Journal of Geotechnical Engineering, vol. 44, no. 6, pp. 997-1005, 2022, doi: 10.11779/CJGE202206003.
  • [4] S.M.A. Qaidi, Y.Z. Dinkha, J.H. Haido, M.H. Ali, and B.A. Tayeh, “Engineering properties of sustainable green concrete incorporating eco-friendly aggregate of crumb rubber: A review”, Journal of Cleaner Production, vol. 324, 2021, doi: 10.1016/j.jclepro.2021.129251.
  • [5] H. Li, W. Long, and K.H. Khayat, “Efficient recycling of waste rubber in a sustainable fiber-reinforced mortar and its damping and energy dissipation capacity”, Cement and Concrete Composites, vol. 138, 2023, doi: 10.1016/j.cemconcomp.2023.104963.
  • [6] F. Yang, Z. Ke, W. Feng, X. Li, S. Chen, and H. Li, “Effects of crumb rubber particles on the dynamic response of reinforced concrete beams subjected to blast loads”, Engineering Structures, vol. 300, 2024, doi: 10.1016/j.engstruct.2023.117181.
  • [7] F. Yang, W. Feng, F. Liu, L. Jing, B. Yuan, and D. Chen, “Experimental and numerical study of rubber concrete slabs with steel reinforcement under close-in blast loading”, Construction and Building Materials, vol. 198, pp. 423-436, 2019, doi: 10.1016/j.conbuildmat.2018.11.248.
  • [8] R. Yang, Y. Xu, and P.Y. Chen, “Experimental study on dynamic stability of rubber-cement composites by SHPB and high-speed slicing”, Archives of Civil Engineering, vol. 68, no. 1, pp. 319-334, 2022, doi: 10.24425/ace.2022.140170.
  • [9] R. Yang, Y. Xu, J. Liu, J. Ding, and H. Xie, “Dynamic damage characteristics of two-dimensional flat plate of rigidflexible coupling surrounding rock supporting structure under blast loading”, Journal of Central South University (Science and Technology), vol. 54, no. 6, pp. 2513-2528, 2023, doi: 10.11817/j.issn.1672-7207.2023.06.036.
  • [10] D. Zhang, “Study on preparation and thermal sensitivity of DDNP/PETN micro-initiating explosive”, Coal Mine Blasting, no. 3, pp. 17-20+24, 2018.
  • [11] P. Zhao, “Study on the effect of pH on the diazo reaction of DDNP”, Coal Mine Blasting, vol. 39, no. 2, pp. 9-12, 2021.
  • [12] J. Ge, “Experimental study on crack propagation of rock blasting under initial stress state”, Anhui University of Science and Technology, 2021.
  • [13] K. Cao, Q. Fu, W. Ma, C. Zhang, C. Tang, and L. Zhang, “Study on the underwater anti-explosion mechanism and damage grade prediction of wall panels reinforced by corrugated steel-concrete slab composite structures with different wave heights”, Structures, vol. 60, 2024, doi: 10.1016/j.istruc.2024.105922.
  • [14] J. Feng, S. Liu, H. Du, and H. Liu, “Quantitative prediction of ultra-deep tight sandstone fractures based on the theory of minimum energy dissipation”, Geoenergy Science and Engineering, vol. 226, 2023, doi: 10.1016/j.geoen.2023.211749.
  • [15] X. Yao, Y. Yang, M. Zheng, J. Wang, C. Liu, J. Sun, and G. Wu, “Enhanced corrosion resistance of magnesium neodymium alloy in simulated concrete pore solution by predesigned corrosion product”, Materials Today Communications, vol. 32, 2022, doi: 10.1016/j.mtcomm.2022.104027.
  • [16] J. Mo, F. Ren, Y. Ye, S. Tian, and C. Lai, “Effect of different crumb rubber particle sizes on the flexural properties of crumb rubber concrete”, Materials Letters, vol. 326, 2022, doi: 10.1016/j.matlet.2022.132960.
  • [17] R. A. Assaggaf, M. Maslehuddin, S. U. Al-Dulaijan, et al., “Cost-effective treatment of crumb rubber to improve the properties of crumb-rubber concrete”, Case Studies in Construction Materials, vol. 16, 2022, doi: 10.1016/j.cscm.2022.e00881.
  • [18] R. Yan and Y. Xu, “Experimental study on dynamic compression behavior characteristics and stress wave propagation law of rigid-flexible combinations under cyclic bi-directional impact loading”, Journal of Materials Research and Technology, vol. 25, pp. 925-945, 2023, doi: 10.1016/j.jmrt.2023.05.261.
  • [19] L. Qiao, M. Zhou, J. Yang, and Q. Li, “Experimental study on energy absorption of high damping rubber for rock under dynamic loads”, Chinese Journal of Rock Mechanics and Engineering, vol. 37, no. 4, pp. 961-968, 2018, doi: 10.13722/j.cnki.jrme.2017.1096.
  • [20] J. Zhi, S. Wang, H. Wang, H. Lu, W. Lin, and C. Qiao, “Analysis on energy loss of rubber under dynamic load”, Acta Polymerica Sinica, no. 4, pp. 708-715, 2017, doi: 10.11777/j.issn1000-3304.2017.16172.
  • [21] J. Zhi, H. Lu, H.Wang, et al., “Analysis on dynamic compression performance of tire rubber based on generalized Maxwell model”, Acta Polymerica Sinica, no. 7, pp. 887-894, 2016, doi: 10.11777/j.issn1000-3304.2016.15332.
  • [22] Y. Xu, J. Liu, R. Yang, J. Ding, and K. Gu, “Mechanical properties and energy evolution of ultra high strength rubber concrete”, Journal of Building Materials, vol. 26, no. 6, pp. 612-622, 2023, doi: 10.3969/j.issn.1007-9629.2023.06.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-daeb115f-cb5d-4a68-91ef-ccc713461dda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.