PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial Bee Colony Algorithm for the Protein Structure Prediction Based on the Toy Model

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The protein structure folding is one of the most challenging problems in the field of bioinformatics. The main problem of protein structure prediction in the 3D toy model is to find the lowest energy conformation. Although many heuristic algorithms have been proposed to solve the protein structure prediction (PSP) problem, the existing algorithms are far from perfect since PSP is an NP-problem. In this paper, we proposed an artificial bee colony (ABC) algorithm based on the toy model to solve PSP problem. In order to improve the global convergence ability and convergence speed of the ABC algorithm, we adopt a new search strategy by combining the global solution into the search equation. Experimental results illustrate that the suggested algorithm can get the lowest energy when the algorithm is applied to the Fibonacci sequences and to four real protein sequences which come from the Protein Data Bank (PDB). Compared with the results obtained by PSO, LPSO, PSO-TS, PGATS, our algorithm is more efficient.
Wydawca
Rocznik
Strony
241--252
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education Dalian University No.10 Xuefu Street, Jinzhou New District, Dalian, Liaoning Province, China
autor
  • Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education Dalian University No.10 Xuefu Street, Jinzhou New District, Dalian, Liaoning Province, China
autor
  • Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education Dalian University No.10 Xuefu Street, Jinzhou New District, Dalian, Liaoning Province, China
Bibliografia
  • [1] Dobson, C.: Protein folding and misfolding, Nature, 426(6968), 2003, 884-890.
  • [2] Unger, R., Moult, J.: Finding the lowest free energy conformation of a protein is an NP-hard problem: proof and implications, Bulletin of Mathematical Biology, 55(6), 1993, 1183–1198.
  • [3] Anfinsen, C.: Principles that govern the folding of protein chains, Science, 181(4096), 1973, 223–230.
  • [4] Dill, K., Fiebig, K., Chan, H.: Cooperativity in protein-folding kinetics, Proceedings of the National Academy of Sciences, 90, 1993, 1942–1946.
  • [5] Seo, M., Park, S., Won, J.: Towards efficient searching on the secondary structure of protein sequences, Fundamenta Informaticae, 78(4), 2007, 525–542.
  • [6] Stillinger, F., Head-Gordon, T., Hirshfeld, C.: Toy model for protein folding, Physical Review E, 48, 1993, 1469–1477.
  • [7] Stillinger, F., Head-Gordon, T.: Collective aspects of protein folding illustrated by a toy model, Physical Review E, 52(3), 1995, 2872–2877.
  • [8] Jiang, T., et al.: Protein folding simulations of the hydrophobic chydrophilicmodel by combining tabu search with genetic algorithms, The Journal of Chemical Physics, 119(8), 2003, 4592–4596.
  • [9] Ma, Z.: Stochastic populations, power law and fitness aggregation in genetic algorithms, Fundamenta Informaticae, 122(3), 2013, 173–206.
  • [10] Zhou, C., Jiao, Y., Zhang, Q. et al.: A hybrid algorithm for protein structure prediction, Journal of Computational and Theoretical Nanoscience, 10(11), 2013, 2701–2707.
  • [11] Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • [12] Li, B., Li, Y., Gong, L.: Protein secondary structure optimization using an improved artificial bee colony algorithm based on AB off-lattice model, Engineering Applications of Artificial Intelligence, 27, 2014, 70–79.
  • [13] Zhang, Y., Wu, L.: Artificial bee colony for two dimensional protein folding, Advances in Electrical Engineering Systems, 1, 2012, 19–23.
  • [14] Zhou, C., Hou, C.,Wei, X. et al.: Improved hybrid optimization algorithm for 3D protein structure prediction. Journal of Molecular Modeling, 20(7), 2014, 1–12.
  • [15] Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The best-so-far selection in artificial bee colony algorithm, Applied Soft Computing, 11(2), 2011, 2888–2901.
  • [16] Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems, Foundations of Fuzzy Logic and Soft Computing Lecture Notes in Computer Science, 4529, 2007, 789–798
  • [17] Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization, Applied Mathematics and Computation, 217, 2010, 3166–3173.
  • [18] Wang, J.: The application of taboo search algorithm in protein structure prediction, Computer Knowledge and Technology, 27, 2008, 2101–2103.
  • [19] Chen, X., Lv, M. W., Zhao, L., Zhang, X.: An improved particle swarm optimization for protein folding prediction, International Journal of Information Engineering and Electronic Business, 1, 2011, 1–8.
  • [20] Guo, H., Lan, R., Chen, X. et al.: Tabu search-particle swarm algorithm for protein folding prediction, Computer Engineering and Applications, 47, 2011, 46–50.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dae8d834-46de-4bb7-a4e8-901887ccb47b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.