PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of concrete carbonation; is it a process unlimited in time and restricted in space?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the article is mathematical modelling of the carbonation process that has been based on results of research conducted both in accelerated and natural conditions. The article covers short characteristic of carbonation, its processes and effects. Also critical review of articles that concern carbonation mathematical models was included in the paper. Assuming the self-terminating nature of carbonation the hyperbolic model of carbonation was formulated. Such a model describes the carbonation progress as the process unlimited in time but with the restricted range in concrete depth that is limited by the value of a model asymptote. Presented results cover research on carbonation of concrete with a different water-cement ratio and different types of binders and duration times of early curing. Investigations have been conducted as accelerated (1% concentration of CO2) as well as in long-term exposures in natural conditions. The obtained results confirmed statistically that hyperbolic model is a well-founded approach when the modelling concrete carbonation process is concerned.
Rocznik
Strony
43--54
Opis fizyczny
Bibliogr. 49, il., tab., wykr., rys.
Twórcy
autor
  • Building Research Institute, 1 Filtrowa St., 00-611 Warszawa, Poland
  • Department of Building Materials Engineering, Warsaw University of Technology, 1 Politechniki Sq., 00-661 Warsaw, Poland
Bibliografia
  • [1] D. Van Gemert, “Contribution of concrete-polymer composites to sustainable construction and conservation procedures”, Restoration of Buildings and Monuments 18 (3/4), 143-150 (2012).
  • [2] P. Woyciechowski, “Model of concrete carbonation”, Sientific Notebooks - Building 157, CD-ROM (2013), (in Polish).
  • [3] K. Kobayashi, K. Suzuki, and Y. Uno, “Carbonation of concrete structures and decomposition of C-S-H”, Cement and Concrete Research 24 (1), 55-61 (1994).
  • [4] B. Lagerblad, Carbon Dioxide Uptake During Concrete Life Cycle - State-of-the-art, Swedish Cement and Concrete Research Institute CBI, Stockholm, 2005.
  • [5] S.A. Bernal, R.M. de Gutiérrez, and J.L. Provis, “Carbonation of alkali-activated GBFS/MK concretes”, Int. Congress on Durability of Concrete 1, CD-ROM (2012).
  • [6] J. Deja, “Carbonation aspects of alkali activated slag mortars and concretes”, Silicates Industriels 67 (3/4), 37-42 (2002).
  • [7] Cheng-Feng Chang, and Jing-Wen Chen, “The experimental investigation of concrete carbonation depth”, Cem.&Con. Res. 36 (9), 1760-1767 (2006).
  • [8] W. Jackiewicz-Rek and P. Woyciechowski, “Carbonation rate of air-entrained fly ash concretes”, Cement-Lime-Concrete XVI/XXVIII (5), 249-256 (2011).
  • [9] P. Woyciechowski, “Influence of mineral additives on concrete carbonation”, Proc. Brittle Matrix Composites 10, 115-124 (2012).
  • [10] L. Haselbach and A. Thomas, “Carbon sequestration in concrete sidewalk”, Construction and Building Materials 54, 47-52 (2014).
  • [11] L. Czarnecki and P. Woyciechowski, “Methods of concrete carbonation testing”, Construction and Building Materials 426 (2), 5-7 (2008), (in Polish).
  • [12] D. Gawin and L. Sanavia, “Mathematical model of thermalmoisture phenomena in porous materials, including air di andsolved in water”, Proc. Physics of Structure Building in Theory and Practice 2, 53-60 (2007).
  • [13] A. Muntean, “On the interplay between fast reaction and slow diffusion in the concrete carbonation process: a matchedasymptotics approach”, Meccanica 44 (1), 35-46 (2009).
  • [14] CEB Bulletin 238, New Approach to Durability Design. an Example for Carbonation Induced Corrosion, Comitée Euro- International du Béton CEB, Paris, 1997.
  • [15] B. Bary and A. Sellier, “Coupled moisture-carbon dioxidecalcium transfer model for carbonation of concrete”, Cement and Concrete Research 34 (12), 1859-1872 (2004).
  • [16] O. Burkan Isgor and A.G. Razaqpur, “Finite elements modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures”, Cement and Concrete Composites 26, 57-73 (2004).
  • [17] K.M.A. Hossain and M. Lachemi, “Development of model for the prediction of carbonation in pozzolanic concrete”, Proc. Third Int. Conf. on Construction Materials: Performance, Innovations and Structural Implications 1, CD-ROM (2005).
  • [18] T. Ishida, K. Maekawa, and M. Soltani, “Theoretically identified strong coupling of carbonation rate and thermodynamic moisture states in micropores of concrete”, J. Advanced Concrete Technology 2 (2), 213-222 (2004).
  • [19] K. Maekawa and T. Ishida, “Modeling of structural performances under coupled environmental and weather action”, Materials and Structures 35, 591-602, (2002).
  • [20] Y.H. Loo, M.S. Chin, C.T. Tam, and K.C.G. Ong, “A carbonation prediction model for accelerated carbonation testing of concrete”, Magazine of Concrete Research 46, 191-200 (1994).
  • [21] Y. Masuda and H. Tanano, “Mathematical model on process of carbonation of concrete”, Concrete Research and Technology 2 (1), 125-34 (1991).
  • [22] M. Te Liang, W. Jun Qu, and Ch.-H. Liang, “Mathematical modeling and prediction method of concrete carbonation and its applications”, J. Marine Science and Technology 10 (2), 128-135 (2002).
  • [23] I. Monteiro, F.A. Branco, J. de Brito, and R. Neves, “Statistical analysis of the carbonation coefficient in open air concrete structures”, Construction and Building Materials 29, 263-269 (2012).
  • [24] A. Steffens, D. Dinkler, and H. Ahrens, “Modeling carbonation for corrosion risk prediction of concrete structures”, Cement and Concrete Research 32, 935-941 (2002).
  • [25] L-O. Nilsson, “Interaction between microclimate and concrete - a perquisite for deterioration”, Construction and Building Materials 10 (5), 301-308 (1996).
  • [26] V.G. Papadakis, C.G. Vayenas, and M.N. Fardis, “Physical and chemical characteristics affecting the durability of concrete”, ACI Material J. 9 (2), 186-96 (1991).
  • [27] G.W. Groves, A. Brough, I.G. Richardson, and C.M. Dobson, “Progressive changes in the structure of hardened C3S cement pastes due to carbonation”, J. American Ceramic Society 74 (11), 2891-2896 (1991).
  • [28] X.-Y. Wang and H.-S. Lee, “A model for predicting the carbonation depth of concrete containing low-calcium fly ash”, Construction and Building Materials 23, 725-733 (2009).
  • [29] D. Russell, P.A.M. Basheer, G.I.B. Rankin, and A.E. Long, “Effect of relative humidity and air permeability on prediction of the rate of carbonation”, Civil Engineering, Structure & Building 146 (3), 319-326 (2001).
  • [30] T. Uomoto and Y. Takada, “Factors affecting concrete carbonation rate”, Durability of Building Materials Components 6, 1133-1141 (1993).
  • [31] Y. Kishitani, Sh. Hokoi, K. Harada, and S. Takada, “Prediction model for carbonation of concrete structure considering heat and moisture transfer”, J. Structural and Construction Engineering - Trans. AIJ 595, 17-23 (2005).
  • [32] A. Sarja, Predictive and Optimised Life Cycle Management: Buildings and Infrastructure, Taylor & Francis, London, 2006.
  • [33] Model Code 2010 - First Complete draft, Volume 1&2, FIB Bulletin 65&66, Lausanne, pp. 630 (2012).
  • [34] P. Schiessl and S. Lay, “Statistical models and methodology for durability”, in Predictive and Optimized Life Cycle Management, Buildings and Infrastructure, ed. Asko Sarja, Taylor & Francis, London, 2006.
  • [35] L. Czarnecki and P.H. Emmons, Repair and Protection of Concrete Structures, P.C., Krakow, 2002, (in Polish).
  • [36] J.H. Brown, “Carbonation. The effect of exposure and concrete quality: field survey results from some 400 structures”, Proc. 5th Int. Conf. Durability of Building Materials and Components, Span Press, London, 262-71 (1991).
  • [37] J.P. Balayssac, Ch.H. Détriché, and J. Grandet, “Effects of curing upon carbonation of concrete”, Construction and Building Materials 9 (2), 91-95 (1995).
  • [38] L. Czarnecki and H. Justnes, “Sustainable durable concrete”, Cement Lime Concrete XVII/XXIX (6), 341-362 (2012).
  • [39] Concrete According to the Standard PN-EN 206-1 - Commentary under Guidance of L. Czarnecki, P. C., Krakow, 2004, (in Polish).
  • [40] R. Duval, “La durabilité des armatures et du béton d‘enrobage”, in La Durabilité du Béton, ed. Baron J.& J.-P. Ollivier, pp. 225-270, Presses Pont et Chaussée, Paris, 2004.
  • [41] J. Linhua, B. Ling, and Y. Cai, “A model for predicting carbonation of high-volume fly ash concrete”, Cement and Concrete Research 30 (5), 699-702 (2000).
  • [42] Y.F. Houst and F.H. Wittmann, “Depth profiles of carbonates formed during natural carbonation”, Cement and Concrete Research 32, 1923-1930 (2002).
  • [43] A. V. Saetta and R. V. Vitaliani, “Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures - part I: theoretical formulation”, Cement and Concrete Research 34 (4), 571-579 (2004).
  • [44] G. Fagerlund, Durability of Concrete Structures, Arkady, Warszawa, 1997, (in Polish).
  • [45] R.F.M. Bakker, “Initiation period”, in ed. P. Schiessl, Corrosion of Steel in Concrete: Report of the Technical Committee 60 - CSC RILEM, Chapman and Hall, pp. 22-54, London, 1988.
  • [46] M. Hergenr¨oder, Zur statistichen Instandhaltungsplanung f ¨ur bestehende Betonbauwerke bei Karbonatisierung des Betons und m¨oglicher der Bewerhung, Technische Universitat Munchen, Munchen, 1992.
  • [47] L. Czarnecki and P. Woyciechowski, “Concrete carbonation as a limited process and its relevance to CO2 sequestration”, ACI Materials J. 109 (3), 275-282 (2012).
  • [48] L. Czarnecki and P. Woyciechowski, “Influence of fluidal fly ash in binder on concrete carbonation”, in Utilization of Fly Ash From Coal Fluidal Bed Combustion in Structural Concrete (Under Redaction of A.M. Brandt), pp. 209-252, IPPT PAN, Warszawa, 2010, (in Polish).
  • [49] L. Czarnecki and P. Woyciechowski, “Application of selfterminating carbonation model and chloride diffusion model to predict reinforced concrete construction durability”, Bull. Pol. Ac.: Tech. 61 (1), 173-181 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dae752cd-97ad-4092-9ca8-ab6d6007790a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.