PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

GNSS Meteorology

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
GNSS meteorology is the remote sensing of the atmosphere (troposphere) using Global Navigation Satellite Systems (GNSS) to derive information about its state. The most interesting information is a delay of the signal propagation due to the water vapor content - the Slant Wet Delay (SWD). The inverse modeling technique being concern here is the tomography. It is the transformation of the slant integrated observation of state of the atmosphere (SWD), to the three dimensional distribution of the water vapor. Over past six years the studies on GNSS tomography were performed in the Wroclaw University of Environmental and Life Sciences on the GNSS tomography. Since 2008 the new national permanent GNSS network ASG-EUPOS (about 130 GNSS reference stations) has been established in Poland (www.asgeupos.pl). This paper presents the issues of the Near Real Time troposphere model construction, characteristic of GNSS and meteorological data and the building of the required IT infrastructure.
Twórcy
autor
  • Wroclaw University of Environmental and Life Sciences
autor
  • Wroclaw University of Environmental and Life Sciences
autor
  • Wroclaw University of Environmental and Life Sciences
autor
  • Wroclaw University of Environmental and Life Sciences
Bibliografia
  • [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen (1999). LAPACK Users’ Guide, Third Edition. Society for Industrial and Applied Mathematics.
  • [2] Bender, M., G. Dick, J. Wickert, M. Ramatschi, M. Ge, G. Gendt, M. Rothacher, A. Raabe, and G. Tetzlaff (2009). Estimates of the information provided by GPS slant data observed in Germany regarding tomographic applications. J. Geophys. Res. 114, D06303.
  • [3] Bender, M. and A. Raabe (2007). Preconditions to ground based GPS water vapour tomography. Annales Geophysicae 25(8), 1727–1734.
  • [4] Bender, M., R. Stosius, F. Zus, G. Dick, J. Wickert, and A. Raabe (2010). Gnss water vapour tomography – expected improvements by combining gps, glonass and galileo observations. Advances in Space Research In Press, Correct-ed Proof, –.
  • [5] Boehm, J., A. Niell, P. Tregoning, and H. Schuh (2006). Glob-al Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 33, 15–26.
  • [6] Bosy, J., W. Graszka, and M. Leonczyk (2007). ASGEUPOS. A Multifunctional Precise Satellite Positioning System in Poland. European Journal of Navigation 5(4), 2–6.
  • [7] Bosy, J., A. Oruba, W. Graszka, M. Leonczyk, and M. Ryczywolski (2008). ASG-EUPOS densification of EUREF Permanent Network on the territory of Poland. Re-ports on Geodesy 2(85), 105–112.
  • [8] Bosy, J., W. Rohm, and J. Sierny (2010). The concept of the near real time atmosphere model based on the GNSS and the meteorological data from the ASG-EUPOS reference stations. Acta Geodyn. Geomater. 7(1(157)), 1–9.
  • [9] Boudouris, G. (1963). On the index of refraction of air, the ab-sorption and dispersion of centimeter waves by gases. Journal of Research of the National Bureau of Standards 67D(6), 631684.
  • [10] Dousa, J. (2004). Evaluation of tropospheric parameters esti-mated in various routine GPS analysis. Physics and Chemistry of the Earth, Parts A/B/C 29(2-3), 167 – 175. Probing the Atmosphere with Geodetic Techniques.
  • [11] Dousa, J. (2010). The impact of errors in predicted GPS orbits on zenith troposphere delay estimation. GPS Solutions.
  • [12] Flores, A., G. Ruffini, and A. Rius (2000). 4D tropospheric tomography using GPS slant wet delays. Annales Geophysicae 18(2), 223–234.
  • [13] Hirahara, K. (2000). Local GPS tropospheric tomography. Earth Planets Space 52(11), 935–939.
  • [14] Kleijer, F. (2004). Troposphere Modeling and Filtering for Precise GPS Leveling. Ph. D. thesis, Department of Mathematical Geodesy and Positioning, Delft University of Technology, Kluyverweg 1, P.O. Box 5058, 2600 GB DELFT, the Netherlands. 260 pp.
  • [15] Mendes, V. B. (1999). Modeling the neutral-atmosphere propagation delay in radiometric space techniques. Ph. D. the-sis, Deparment of Geodesy and Geomatics Engineering Technical Reort No. 199, University of New Brunswick, Fredericton, New Brunswick, Canada.
  • [16] Niell, A. E. (1996). Global mapping functions for the atmosphere delay at radio wavelenghs. J. Geophys. Res. 101(B2), 3227–3246.
  • [17] Nilsson, T. and L. Gradinarsky (2006). Water Vapor Tomography Using GPS Phase Observations: Simulation Results. IEEE Trans. Geosci. Remote Sens. 44(10 Part 2), 2927–2941.
  • [18] Owens, J. (1967). Optical refractive index of air: dependence on pressure, temperature and composition. Appl. Opt. 6(1), 51–59.
  • [19] Pavelyev, A., Y. Liou, J.Wickert, T. Schmidt, and A. Pavelyev (2010). Phase acceleration: a new important parameter in gps occultation technology. GPS Solutions 14, 3–11. 10.1007/s10291-009-0128-1.
  • [20] Rohm, W. and J. Bosy (2009). Local tomography troposphere model over mountains area. Atmospheric Research 93(4), 777 – 783.
  • [21] Rohm, W. and J. Bosy (2010). The verification of gnss tropospheric tomography model in a mountainous area. Advanc-es in Space Research In Press, Corrected Proof, –.
  • [22] Vedel, H. and X. Huang (2004). Impact of ground based GPS data on Numerical Weather Prediction. J. Meteor. Soc. Japan 82(1B), 459–472.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dae466af-8e72-4533-9014-2d4bb987a7be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.