PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Możliwości wykorzystania zasobników z płynną solą w systemach energetycznych z redukowaną liczbą bloków węglowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Possible applications of molten salt storages to a power grid with reduced number of carbon units
Języki publikacji
PL
Abstrakty
PL
W artykule rozpatrzono możliwości zastosowania zasobników energii z płynną solą w systemach energetycznych, które przechodzą przemiany w kierunku ograniczenia liczby wytwórczych jednostek węglowych. Na przestrzeni ostatnich lat wspomniane zasobniki stały się popularne w krajach o wysokim nasłonecznieniu. Niniejszy artykuł przedstawia analizę wykorzystania magazynów energii dla innych szerokości geograficznych. Rozpatruje się przy tym dodatkowe rozwiązania, odpowiednie dla systemów energetycznych, które przechodzą transformację ukierunkowaną na zmniejszenie spalania paliw kopalnych.
EN
The paper presents an analysis on the possible applications of molten salt energy storages to power systems that undergo transformations, which aim to reduce the number of fossil fueled power generating units. In the recent years the salt storages have become popular in the countries of high solar irradiance. This paper focuses on the applications of these storages in the areas of another latitudes. Additional designs are under the investigation that are suitable for the power systems where the usage of the fossil fuels is continuously being decreased.
Wydawca
Czasopismo
Rocznik
Tom
Strony
63--72
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Politechnika Śląska
Bibliografia
  • [1] Chmielniak, T.; Kosman, W.; Kosman, G. Simulation Modules of Thermal Processes for Performance Control of Combined Heat and Power Plant with a Gas Turbine Unit. Appl. Therm. Eng. 2007, Vol. 27, Issue 12, str. 2181–2187.
  • [2] Das, A. K.; Inigo, P.; Terdalkar, R. J.; Joshi, A.; Wang, C.; Clark, M. M.; McGrane, D.; Deng, L. Design features and control concepts of ALSTOM molten salt receiver. Energy Procedia 2015, 69, str. 350–359.
  • [3] Garbrecht, O.; Bieber, M.; Kneer, R. Increasing fossil power plant flexibility by integrating molten-salt thermal storage. Energy 2017, 118, str. 876–883.
  • [4] Gonzalez, P. A.; Gomez-Hernandez, J.; Briongos, J. V.; Santana, D. Thermo-economic optimization of molten salt steam generators. Energy Convers. Manag. 2017, 8, str. 228–243.
  • [5] Gordon J. M., Fasquelle T., Nadal E., Vossier A.: Providing large-scale electricity demand with photovoltaics and molten-salt storage. Renewable and Sustainable Energy Reviews 135 (2021) 110261.
  • [6] Guo, J-Q.; Li, M.-J.; Xu, J.-L.; Yan, J.-J.; Wang, K. Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems. Energy 2019, 173, str. 785–798.
  • [7] Hamilton W. T., Newman A. M., Wagner M. J., Braun R. J.: Off-design performance of molten salt-driven Rankine cycles and its impact on the optimal dispatch of concentrating solar power systems. Energy Conversion and Management 220 (2020) 113025.
  • [8] Herrmann, U.; Kelly, B.; Price, H. Two-tank molten storage for parabolic trough solar power plants. Energy 2004, 29, str. 883–893.
  • [9] Kelly, B.; Kearny, D. Thermal Storage Commercial Plant Design Study for a 2-Tank Indirect Molten Salt System. USA National Renewable Energy: Colorado, CO, USA, 2006.
  • [10] Li, W.; Li, T.; Wang, H.; Dong, J.; Li, Y.; Cui, D.; Ge. W.; Yang, J.; Okoye, M.O. Optimal dispatch model considering environmental cost based on combined heat and power with thermal energy storage and demand response. Energies 2019, 12, 817.
  • [11] Li, Ch.; Yang, Z.; Zhai, R.; Yang, Y.; Patchigolla, K.; Oakey, J. E. Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage. Energy 2018, 163, str. 956–968.
  • [12] Pacheco, J. E.; Wolf, T.; Muley, N. Incorporating Supercritical Steam Turbines into Advanced Molten-Salt Power Tower Plants Feasibility and Performance; Sandia National Laboratories report: California, CA, USA 2013.
  • [13] Reyes-Belmonte, M. A.; Sebastián, A.; Gonzalez-Aguilar, J.; Romero, M. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant. Journal of Physical and Chemical Reference Data 2017, 1850, 160024.
  • [14] Rusin, A.; Wojaczek, A. Trends of changes in the power generation system structure and their impact on the system reliability. Energy 2015, 92, str. 128–134.
  • [15] Rusin A., Nowak G., Łukowicz H., Kosman W., Chmielniak T., Kaczorowski M.: Selecting optimal conditions for the turbine warm and hot start-up. Energy 214 (2021) 118836.
  • [16] Sarbu, I.; Sebarchievici, C. A comprehensive review of thermal energy storage. Sustainability 2018, 10, 191.
  • [17] Serrano-Lopez, R.; Fradera, J.; Cuesta-Lopez, S. Molten salts database for energy applications. Chemical Engineering & Processing Process Intensification 2013, 73, str. 87–102.
  • [18] Shi, N.; Luo, Y. Energy storage system sizing based on a reliability assessment of power systems integrated with wind power. Sustainability 2017, 9, 395.
  • [19] Turchia C. S., Vidal J., Bauer M.: Molten salt power towers operating at 600–650 C: Salt selection and cost benefits. Solar Energy 164 (2018), str. 38–46.
  • [20] Urbanucci, L.; D’Ettorre, F.; Testi, D. A comprehensive methodology for the integrated optimal sizing and operation of cogeneration systems with thermal energy storage. Energies 2019, 12, 875.
  • [21] Yang H., Wang Q., Huang Y., Gao G., Feng J., Li J., Pei G.: Novel parabolic trough power system integrating direct steam generation and molten salt systems: Preliminary thermodynamic study. Energy Conversion and Management 195 (2019), str. 909–926.
  • [22] Zhang, X.; Wu, Y.; Ma, C.; Meng, Q.; Hu, X.; Yang, C. Experimental study on temperature distribution and heat losses of a molten salt heat storage tank. Energies 2019, 12, 1943.
  • [23] Zou Y., Ding J., Wang W.: Heat transfer performance of U-tube molten salt steam generator. International Journal of Heat and Mass Transfer 160 (2020), 120200.
  • [24] Zsembinszki, G.; Orozco, Ch.; Gasia, J.; Barz, T.; Emhofer, J.; Cabeza, L.F. Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank. Energies 2020, 13, 1425.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dae0a43d-8a1a-4c91-9f1d-aa620bab59c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.