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A domain-boundary element method, based on modified couple stress theory,
is developed for transient dynamic analysis of functionally graded micro-beams. In-
corporating static fundamental solutions as weight functions in weighted residual
expressions, governing partial differential equations of motion are converted to a set
of coupled integral equations. A system of ordinary differential equations in time is ob-
tained by domain discretization and solved using the Houbolt time marching scheme.
Developed procedures are verified through comparisons to the results available in
the literature for micro- and macro-scale beams. Numerical results illustrate elasto-
dynamic responses of graded micro-beams subjected to various loading types. It is
shown that metal-rich micro-beams and those with a smaller length scale parameter
ratio undergo higher displacements and are subjected to larger normal stresses.
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Notation

λ, µ Lame’s constants,
εij strain tensor,
σij stress tensor,
χij symmetric curvature tensor,
mij deviatoric part of the couple stress tensor,
L micro-beam length,
u,w, ϕ axial displacement, transverse displacement, rotation of mid-plane,
κs shear correction factor,
l length scale parameter,
E, ν Young’s modulus, Poisson’s ratio,
A,B,D, F material-dependent coefficients,
h micro-beam thickness,
b micro-beam width,
Nx axial force,
Qx shear force,
Mx bending moment,
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ρ density,
δ Dirac delta distribution,
ξ source point,
ψi shape functions,
V volume fraction,
λ power-law index,
q distributed load intensity,
H unit step function.

1. Introduction

Many problems in engineering science are formulated in terms of
partial differential equations. Usually, analytical solutions do not exist or are
more difficult to be derived due to the nature of the problem, domain of problem
analysis, or boundary conditions. Thus, numerical methods are to be used to ob-
tain approximate solutions of the governing differential equations. The boundary-
element method is one of the numerical techniques, which employs fundamental
solutions of certain partial differential equations as weight functions in weighted-
residual statements. The nature of the fundamental solutions used in a boundary
element formulation determines the main characteristics of the solution proce-
dures. In the domain-boundary element method (D-BEM), fundamental solu-
tions are independent of time and called static fundamental solutions. Utilization
of static fundamental solutions results in a system of integral equations, which
consists of domain integrals involving applied loads, time derivatives of unknown
functions, and material couplings. There are certain advantages associated with
the use of D-BEM in elastodynamic computations. Static fundamental solutions
adopted in D-BEM are much simpler compared to time-dependent fundamen-
tal solutions employed in various boundary element techniques and D-BEM has
better stability characteristics [1]. As a result, the high computational cost as-
sociated with time-domain BEM techniques can be reduced through the use of
D-BEM. The CPU time in D-BEM is shown to be much less than that required
in conventional techniques such as the finite difference method [2].

D-BEM has been used previously to solve a number of problems. Carrer
et al. [1] employed the method to investigate the dynamic behavior of Timo-
shenko beams under various loadings. The study was further extended for dy-
namic analysis of functionally graded Timoshenko beams by Eshraghi and
Dag [2] and laminated fiber-reinforced Timoshenko beams by Ahmed et al. [3].
Carrer et al. [4, 5] used D-BEM to examine the 2D scalar wave propagation.
The method was also applied for elastodynamic analysis of plates. Axisymmetric
forced vibrations of functionally graded annular and circular plates were stud-
ied by Eshraghi and Dag [6]. Providakis [7] presented a D-BEM approach
for transient dynamic analysis of thick plates on a Winkler-type foundation.
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Hatzigeorgiou and Beskos [8], and Providakis and Beskos [9] proposed
D-BEM based solutions for dynamic elastoplasticity of three dimensional struc-
tures and thin flexural plates, respectively. Soares Jr. et al. [10] performed
non-linear dynamic analysis by coupling D-BEM with the time-domain BEM.
They used an iterative coupling scheme and the domain was divided into two
sub-domains. The non-linear part of the problem was modelled by D-BEM. Pet-
tres et al. [11] put forward a D-BEM based solution for heat diffusion, including
heat generation and internal dissipation, in homogeneous and isotropic media.
Oyarzun et al. [12] explicitly calculated Green’s functions and incorporated
them in the time marching scheme of D-BEM to develop a solution procedure
with improved accuracy and stability.

Different formulations of the boundary element method are also proposed to
carry out the dynamic analysis of structures. One such technique is the dual reci-
procity boundary element method (DR-BEM), which employs static fundamen-
tal solutions in the analysis.Kontoni [13] presented a DR-BEM based procedure
for dynamic analysis of elastoplastic problems. Kögl and Gaul [14] examined
three dimensional problems of transient piezoelectricity by the DR-BEM. The
technique is adopted by Chien et al. [15] for the solution of two-dimensional
elastodynamic problems. The implementation of the method for dynamic frac-
ture mechanics is illustrated by Albuquerque et al. [16] and Lu and Wu [17].
Useche and Albuquerque [18, 19] demonstrated applications of DR-BEM in
dynamic structural mechanics. DR-BEM allows conversion of the domain in-
tegrals resulting from the use of the static fundamental solution to boundary
integrals [14–16]. The method is deemed to be computationally efficient because
of the use of the static fundamental solution and boundary-only discretization.

Another approach to carry out elastodynamic analysis in BEM is based
on the derivation of fundamental solutions in the Laplace transform domain.
Wen et al. [20] applied such a technique to study dynamic plate bending prob-
lems. Wen and Aliabadi [21] detailed the application of the boundary el-
ement frequency domain formulation for dynamic analysis of Mindlin plates.
A similar approach is outlined by Wen and Aliabadi [22] to analyse a shear
deformable plate resting on an elastic foundation. Three dimensional Laplace
domain piezoelectric fundamental solutions are used by Igumnov et al. [23]
to examine dynamic bending of a circular piezoelectric plate. Other applica-
tions of the boundary element method in dynamic analysis involve torsional
vibrations [24, 25], half-space loaded by a moving time-dependent force [26],
structural and acoustic response of composite plates [27], and two-dimensional
elastodynamics [28, 29].

In both the domain-boundary element method and the dual reciprocity
boundary element method, static fundamental solutions are used to develop the
formulation. This approach leads to domain integrals in both procedures. These
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integrals are converted to boundary integrals in DR-BEM, whereas in D-BEM
they are treated by employing cells and domain discretization. The Laplace trans-
form domain based formulation is also a boundary-only formulation, and makes
use of fundamental solutions in the Laplace domain.

The objective of the present study is to develop a D-BEM based technique for
forced vibration analysis of functionally graded micro-beams. The formulation is
derived utilizing the modified couple stress theory. Functionally graded materials
(FGMs) are advanced composites, that possess smooth spatial variations in the
volume fractions of the constituent materials. The characteristic feature of FGMs
is the inhomogeneity at both micro- and macro-scales. The inhomogeneity and
continuous spatial variations of the physical properties need to be accounted
for in theoretical and computational studies so as to produce realistic results
regarding behavior of the graded structures.

There are a number of production technologies such as magnetron sput-
tering [30], plasma-enhanced chemical vapor deposition [31], and modified soft
lithography [32] that make the use of functionally graded components in micro-
electro-mechanical-systems (MEMSs) feasible. The analysis of such structures
requires the use of higher order continuum theories that include the size effects.
One of the most commonly used higher order continuum theory in the analysis
of micro-structures is the modified couple stress theory [33]. A single length scale
parameter is needed in this theory to describe a material response at the micro-
scale. The modified couple stress theory based previous works on micro-beams
include both homogeneous and functionally graded structures. Ma et al. [34]
developed a size-dependent Timoshenko beam model for homogeneous beams
employing the modified couple stress theory. Functionally graded Timoshenko
micro-beams were examined by Asghari et al. [35, 36]. Static bending and
free vibration analysis of functionally graded micro-beams were carried out by
Şimşek et al. [37] and Şimşek and Reddy [38], respectively. Effects of vari-
able length-scale parameter on static bending and free vibrations of functionally
graded beams were investigated by Aghazadeh et al. [39]. Babaei et al. [40]
analyzed free vibrations of functionally graded micro-beams in thermal environ-
ments considering temperature dependent material properties.

There are various articles on forced vibrations of micro-beams. Ghayesh
et al. [41] and Vatankhah et al. [42] examined forced vibrations of micro-
beams using strain gradient theory. Forced vibrations of bi-directional function-
ally graded beams carrying a moving mass was considered by Rajasekaran
and Bakhsi Khaniki [43] using the modified couple stress theory. Geometrically
nonlinear forced vibrations of functionally graded micro-beams on a nonlinear
elastic foundation was studied by Das [44]. Nonlinear dynamics of functionally
graded micro-beams was examined by Sheng and Wang [45] employing the
von Kármán nonlinear theory and considering the material damping.
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In the present study, governing partial differential equations for functionally
graded micro-beams are derived by applying Hamilton’s principle. The static
fundamental solution for each of the governing PDE’s is obtained by consid-
ering the corresponding reduced form. Fundamental solutions are then utilized
as weight functions in the weighted residual statements. These statements are
converted to a system of integral equations through integration by parts and alge-
braic manipulations. A system of time-dependent ordinary differential equations
is then obtained via domain discretization and shape-function approximation.
The Houbolt method [46, 47] is used in the numerical solution of the ordinary
differential equations. The proposed methodology is applicable for homogeneous
and functionally graded micro-beams with any kind of material variation pro-
file. Furthermore, the method can be applied to ordinary Timoshenko beams by
setting the length-scale parameter as zero. Developed procedures are verified by
comparisons to solutions available in the literature. Parametric analyses are car-
ried out for functionally graded micro-beams under time-dependent excitations
such as step, harmonic, and impulsive loads. Presented computational results
illustrate the effects of the inhomogeneity index and the length-scale parameter
on a forced vibration response of functionally graded micro-beams.

2. Equations of motion and boundary conditions

Figure 1 shows the geometry of a functionally graded Timoshenko micro-
beam under general time-dependent loading q(x, t). Length, height, and width
of the beam are respectively denoted by L, h, and b. All material properties of
the beam are assumed to be continuous functions of the thickness coordinat z. As
also shown in Fig. 1, transverse shear strain γxz is presumed constant across the
thickness in the Timoshenko beam theory, and the displacement field is expressed
as follows:

ux(x, z, t) = u(x, t)− zϕ(x, t),(2.1)

uy(x, z, t) = 0,(2.2)

uz(x, z, t) = w(x, t),(2.3)

where ux, uy and uz are scalar displacement components; u and w are mid-plane
displacements; ϕ is mid-plane rotation, and t is time. Applying the small-strain
theory, non-zero strains can be found as:

εxx(x, z, t) =
∂u(x, t)

∂x
− z ∂ϕ(x, t)

∂x
,(2.4)

εxz(x, z, t) =
1

2

[
∂w(x, t)

∂x
− ϕ(x, t)

]
.(2.5)
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Fig. 1. Functionally graded Timoshenko micro-beam and deformed shape.

Generalized Hooke’s law results in the following expressions for non-zero
stresses:

σxx(x, z, t) = [2µ(z) + λ(z)]εxx(x, z, t),(2.6)
σyy(x, z, t) = σzz(x, z, t) = λ(z)εxx(x, z, t),(2.7)
σxz(x, z, t) = 2κsµ(z)εxz(x, z, t),(2.8)

where µ(z) and λ(z) are Lame’s parameters, which are functions of the z-co-
ordinate. κs is the shear correction factor specified as 5/6 for a rectangular
cross-section.

In modified couple stress theory, non-zero component of symmetric curvature
tensor and the corresponding non-zero component of the deviatoric part of the
couple stress tensor are respectively given by:

χxy(x, z, t) = −1

4

[
∂2w(x, t)

∂x2
+
∂ϕ(x, t)

∂x

]
,(2.9)

mxy(x, z, t) = 2µ(z)l2(z)χxy(x, z, t),(2.10)

where l(z) is the length scale parameter, which is a function of the thickness
coordinate z. Following the procedure described in [39], i.e. applying Hamilton’s
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principle in conjunction with Eqs. (2.1)–(2.10) and using integration by parts,
governing partial differential equations for elastodynamics of the FGM Timo-
shenko micro-beam are derived as follows:

A11u,xx−B11ϕ,xx = I1ü−I2ϕ̈,(2.11)

−A552

4
(w,xxxx+ϕ,xxx)+κsF55(w,xx−ϕ,x)+q = I1ẅ,(2.12)

D11ϕ,xx+
A552

4
(w,xxx+ϕ,xx)+κsF55(w,x−ϕ)−B11u,xx = I3ϕ̈−I2ü,(2.13)

where a dot over a variable indicates differentiation with respect to time. The co-
efficients of the equations depend on through-the-thickness integrals of material
properties and are given by:

{A11, B11, D11} =

h/2∫
−h/2

E(z)[1− ν(z)]

[1 + ν(z)][1− 2ν(z)]
{1, z, z2}b dz,(2.14)

F55 =

h/2∫
−h/2

E(z)

2[1 + ν(z)]
b dz,(2.15)

A552 =

h/2∫
−h/2

l2(z)E(z)

2[1 + ν(z)]
b dz,(2.16)

{I1, I2, I3} =

h/2∫
−h/2

ρ(z){1, z, z2}b dz.(2.17)

The functions E(z), ν(z), and ρ(z) in the integrands, respectively stand for
modulus of elasticity, Poisson’s ratio, and density.

Related essential boundary conditions at ends of the beam are:

u(x, t) = ū(x, t),(2.18)
w(x, t) = w̄(x, t),(2.19)

w,x(x, t) = w̄,x(x, t),(2.20)
ϕ(x, t) = ϕ̄(x, t),(2.21)

and natural boundary conditions are given as:

Nx = −A11u,x +B11ϕ,x = N̄x,(2.22)

Qx =
A552

4
(w,xxx + ϕ,xx)− κsF55(w,x − ϕ) = Q̄x,(2.23)
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Rx = −A552

4
(w,xx + ϕ,x) = R̄x,(2.24)

Mx = −A552

4
(w,xx + ϕ,x)−D11ϕ,x +B11u,x = M̄x,(2.25)

where a bar over a variable indicates a prescribed value.

3. Domain-boundary element method

In order to convert the governing partial differential equations into integral
forms, static fundamental solutions are required to be used in weighted-residual
expressions. These solutions can be obtained by considering the following reduced
forms of the original partial differential equations [1]:

A11u
∗
,xx(x, ξ) = δ(x− ξ),(3.1)

− A552

4

(
w∗,xxxx −

κsF55

A552/4
w∗,xx

)
= δ(x− ξ),(3.2) (

D11 +
A552

4

)[
ϕ∗,xx(x, ξ)− κsF55

D11 +A552/4
ϕ∗(x, ξ)

]
= δ(x− ξ),(3.3)

where δ(x− ξ) is the Dirac delta distribution; and u∗(x, ξ), w∗(x, ξ), and ϕ∗(x, ξ)
are static fundamental solutions. Solving these equations, fundamental solutions
are derived as follows:

u∗(x, ξ) =
1

A11

|x− ξ|
2

,(3.4)

w∗(x, ξ) =
1

Λw A552/4

{
|x− ξ|

2
− sinh[

√
Λw|x− ξ|]

2
√

Λw

}
,(3.5)

ϕ∗(x, ξ) =
1

D11 +A552/4

sinh[
√

Λϕ|x− ξ|]
2
√

Λϕ
.(3.6)

In these equations, Λw = 4κsF55/A552 and Λϕ = κsF55(D11 +A552/4). Note that
in the derivation of the above fundamental solutions, we have used the following
identities:

d

dx
|x− ξ| = sgn(x− ξ) =

{
−1 if x < ξ,

1 if x > ξ,
(3.7)

sgn(x− ξ) = 2H(x− ξ)− 1,(3.8)
d

dx
H(x− ξ) = δ(x− ξ),(3.9)

where sgn is the sign function and H(x− ξ) is the Heaviside step function.
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Using the static fundamental solutions as weight functions, weighted residual
statements, i.e., weak forms of the governing partial differential equations are
written as follows:

L∫
0

[A11u,xx −B11ϕ,xx − I1ü+ I2ϕ̈]u∗(x, ξ) dx = 0,(3.10)

L∫
0

[
−A552

4
(w,xxxx + ϕ,xxx) + κsF55(w,xx − ϕ,x) + q − I1ẅ

]
(3.11)

× w∗(x, ξ) dx = 0,

L∫
0

[
D11ϕ,xx +

A552

4
(w,xxx + ϕ,xx)(3.12)

+ κsF55(w,x − ϕ)−B11u,xx − I3ϕ̈+ I2ü

]
ϕ∗(x, ξ) dx = 0.

Equations (3.10)–(3.12) can be expressed in terms of boundary conditions and
domain integrals. To illustrate this, we consider Eq. (3.10). Performing integra-
tion by parts, the first two terms are written as:

(3.13)
L∫

0

[A11u,xx −B11ϕ,xx]u∗(x, ξ) dx

= {[A11u,x −B11ϕ,x]u∗(x, ξ)}L0 −
L∫

0

[A11u,x −B11ϕ,x]u∗,x(x, ξ) dx.

We perform another integration by parts for the integral on the right side, which
is expressed as:

(3.14)
L∫

0

[A11u,x −B11ϕ,x]u∗,x(x, ξ) dx

= {[A11u−B11ϕ]u∗,x(x, ξ)}L0 −
L∫

0

[A11u−B11ϕ]u∗,xx(x, ξ) dx.

Note that from Eq. (3.1) it follows that u∗,xx(x, ξ) = δ(x− ξ)/A11. Using the
properties of the δ(x− ξ) one can then write:

L∫
0

[A11u−B11ϕ]u∗,xx(x, ξ) dx =

L∫
0

[A11u−B11ϕ]
δ(x− ξ)
A11

dx(3.15)

= u(ξ, t)− B11

A11
ϕ(ξ, t).
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Thus,

(3.16)
L∫

0

[A11u,xx −B11ϕ,xx]u∗(x, ξ) dx

= u(ξ, t)− B11

A11
ϕ(ξ, t) + {[A11u,x −B11ϕ,x]u∗(x, ξ)}L0

− {[A11u−B11ϕ]u∗,x(x, ξ)}L0 .

Pursuing a procedure similar to that explained for Eq. (3.10) and elaborated in [2]
for Eqs. (3.11) and (3.12), i.e. applying integration by parts twice to Eqs. (3.11)
and (3.12), utilizing the properties of the Dirac delta distribution, and employing
Eqs. (2.22)–(2.25), Eqs. (3.10)–(3.12) are recast into the following forms:

(3.17) u(ξ, t)− B11

A11
ϕ(ξ, t)

= [u∗(x, ξ)Nx(x, t)]x=L
x=0 + {u∗,x(x, ξ)[A11u(x, t)−B11ϕ(x, t)]}x=L

x=0

+

L∫
0

u∗(x, ξ)[I1ü(x, t)− I2ϕ̈(x, t)] dx,

(3.18) w(ξ, t) = [w∗(x, ξ)Qx(x, t)]x=L
x=0 + [w∗,x(x, ξ)Rx(x, t)]x=L

x=0

+

{[
κsF55w

∗
,x(x, ξ)− A552

4
w∗,xxx(x, ξ)

]
w(x, t)

}x=L

x=0

−
L∫

0

[
κsF55w

∗
,x(x, ξ) +

A552

4
w∗,xxx(x, ξ)

]
ϕ(x, t) dx

+

{
A552

4
w∗,xx(x, ξ)[w,x(x, t) + ϕ(x, t)]

}x=L

x=0

−
L∫

0

w∗(x, ξ)q(x, t) dx+

L∫
0

I1w
∗(x, ξ)ẅ(x, t) dx,

(3.19) ϕ(ξ, t)− B11

D11 +A552/4
u(ξ, t) +

A552/4

D11 +A552/4
w,x(ξ, t)

= [ϕ∗(x, ξ)Mx(x, t)]x=L
x=0

−
{
ϕ∗,x(x, ξ)

[
B11u(x, t)− A552

4
w,x(x, t)−

(
D11 +

A552

4

)
ϕ(x, t)

]}x=L

x=0

−
[(

A552

4
Λϕ + κsF55

)
ϕ∗(x, ξ)w(x, t)

]x=L

x=0
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+

L∫
0

(
A552

4
Λϕ + κsF55

)
ϕ∗,x(x, ξ)w(x, t) dx

+

L∫
0

B11Λϕϕ
∗(x, ξ)u(x, t) dx−

L∫
0

ϕ∗(x, ξ)[I2ü(x, t)− I3ϕ̈(x, t)] dx.

Note that the problem involves eight boundary unknowns and solution requires
four distinct integral equations. The additional equation can be obtained by
taking the derivative of Eq. (3.18) with respect to the source point ξ. This leads
to an integral equation for w,x. Performing this operation and substituting the
fundamental solution expressions from Eqs. (3.4)–(3.6) into Eqs. (3.17)–(3.19),
final forms of the integral equations are found as given below:

(3.20) u(ξ, t)−1

2
[u(0, t)+u(L, t)]−B11

A11
ϕ(ξ, t)+

B11

2A11
[ϕ(0, t)+ϕ(L, t)]

=
1

2A11
[Nx(L, t)(L−ξ)−Nx(0, t)ξ]+

1

2A11

L∫
0

|x−ξ|[I1ü(x, t)−I2ϕ̈(x, t)] dx,

(3.21) w(ξ, t)−1

2
[w(0, t)+w(L, t)]+

sinh[
√

Λw(L−ξ)]
2
√

Λw
[w,x(L, t)+ϕ(L, t)]

− sinh[
√

Λwξ]

2
√

Λw
[w,x(0, t)+ϕ(0, t)]

+

L∫
0

sgn(x−ξ)
[

1

2
−cosh(

√
Λw|x−ξ|)]ϕ(x, t) dx

=
1

κsF55

{
Qx(L, t)

(
L−ξ

2
− sinh[

√
Λw(L−ξ)]

2
√

Λw

)
−Qx(0, t)

(
ξ

2
− sinh[

√
Λwξ]

2
√

Λw

)}
+

1

κsF55

{
Rx(L, t)

(
1−cosh[

√
Λw(L−ξ)]
2

)
+Rx(0, t)

(
1−cosh[

√
Λwξ]

2

)}

− 1

κsF55

L∫
0

{
|x−ξ|

2
− sinh[

√
Λw|x−ξ|]

2
√

Λw

}
[q(x, t)−I1ẅ(x, t)] dx,

(3.22) w,x(ξ, t)+ϕ(ξ, t)− cosh[
√

Λw(L−ξ)]
2

[w,x(L, t)+ϕ(L, t)]

− cosh[
√

Λwξ]

2
[w,x(0, t)+ϕ(0, t)]+

L∫
0

√
Λw sinh(

√
Λw|x−ξ|)ϕ(x, t) dx
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=
1

κsF55

{
Qx(L, t)

(
−1

2
+

cosh[
√

Λw(L−ξ)]
2

)
−Qx(0, t)

(
1

2
− cosh[

√
Λwξ]

2

)}
+

1

κsF55

{
Rx(L, t)

(√
Λw sinh[

√
Λw(L−ξ)]

2

)
+Rx(0, t)

(
−
√

Λw sinh[
√

Λwξ]

2

)}

− 1

κsF55

L∫
0

sgn(x−ξ)
{
−1

2
+

cosh[
√

Λw|x−ξ|]
2

}
[q(x, t)−I1ẅ(x, t)] dx,

(3.23) ϕ(ξ, t)− B11

D11+A552/4
u(ξ, t)+

A552/4

D11+A552/4
w,x(ξ, t)

+
cosh[

√
Λϕ(L−ξ)]

2(D11+A552/4)

[
B11u(L, t)−A552

4
w,x(L, t)−

(
D11+

A552

4

)
ϕ(L, t)

]
+

cosh[
√

Λϕξ]

2(D11+A552/4)

[
B11u(0, t)−A552

4
w,x(0, t)−

(
D11+

A552

4

)
ϕ(0, t)

]
+
√

Λϕ

(
1+

A552/4

D11+A552/4

){
sinh[

√
Λϕ(L−ξ)]
2

w(L, t)−
sinh[

√
Λϕξ]

2
w(0, t)

}

−Λϕ

(
1+

A552/4

D11+A552/4

) L∫
0

sgn(x−ξ)
cosh(

√
Λϕ|x−ξ|)
2

w(x, t) dx

−
B11

√
Λϕ

D11+A552/4

L∫
0

sinh(
√

Λϕ|x−ξ|)
2

u(x, t) dx

=
1

D11+A552/4

{
Mx(L, t)

sinh[
√

Λϕ(L−ξ)]
2
√

Λϕ
−Mx(0, t)

sinh[
√

Λϕξ]

2
√

Λϕ

}

− 1

D11+A552/4

L∫
0

sinh[
√

Λϕ|x−ξ|]
2
√

Λϕ
[I2ü(x, t)−I3ϕ̈(x, t)] dx.

In order to be able to calculate domain integrals appearing in Eqs. (3.20)–
(3.23), the beam is discretized into a finite number of quadratic cells, each of
which has three nodes as shown in Fig. 2. A total of N equally spaced nodes are
employed. The domain enclosed by three consecutive nodes is a cell, thus there
are a total of M = (N − 1)/2 cells. The jth cell covers the interval Ωj = [xj1, x

j
3],

1 ≤ j ≤M ; xj1 and xj3 being the x coordinate of the first and last node of the jth

cell, respectively. The x-coordinate of the middle node of the jth cell is denoted
by xj2.

Second-order polynomial shape functions are used to approximate the varia-
tion of a quantity over a cell. The shape functions are given by:
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ψj1(x) =
(x− xj2)(x− xj3)

2h2
c

,(3.24)

ψj2(x) = −(x− xj1)(x− xj3)

h2
c

,(3.25)

ψj3(x) =
(x− xj1)(x− xj2)

2h2
c

,(3.26)

where hc is the half-length of each cell.
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Fig. 2. Domain discretization.

Variation of a generic variable ζ across the cell is approximated as follows:

(3.27) ζ =
3∑
i=1

ψji (x)ζ(xji , t).

The function value ζ(xji , t) is calculated at the ith node of the jth cell at time t.
Using the approximation introduced by (3.27), the domain integrals in
Eqs. (3.20)–(3.23) are computed over each cell and the results are added up to
estimate the total value. Applying this discretization, a generic domain integral
can be expressed as follows:

(3.28)
L∫

0

η∗(x, ξ)ζ(x, t) dx =
M∑
j=1

xj3∫
xj1

η∗(x, ξ)
[ 3∑
i=1

ψji (x)ζ(xji , t)
]
dx,

where η∗(x, ξ) is any of the fundamental solutions in Eqs. (3.4)–(3.6) or its deriva-
tive with respect to x; and ζ(x, t) stands for either an unknown displacement
function or its second time derivative.

A set of ordinary differential equations in time is obtained by writing each
of Eqs. (3.20)–(3.23) for every boundary node ξk = (0, L), (k = 1, N); and for
every internal node ξk = (hc, 2hc, . . . , L− hc) (k = 2, 3, . . . , N − 1). Then, the
equations are consolidated into the following matrix form:

(3.29) [A]{u} = [S]{ü}+ [G]{N}+ {f}.
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All vectors and matrices in Eq. (3.29) are given in Appendices A–C. The time-
dependent system of ordinary differential equations given by Eq. (3.29) is solved
by means of the Houbolt method.

In the Houbolt method, variation of a parameter from t = tn−2 to t = tn+1

is approximated by cubic Lagrange interpolation. The following representation
is applied to calculate the second time derivative of a generic variable χ:

(3.30) χ̈n+1 =
1

∆t2
[2χn+1 − 5χn + 4χn−1 − χn−2].

There are various time integration schemes such as the Newmark method,
the Wilson ϑ-method, and the Houbolt method, that yield accurate results for
linear structural dynamics problems [48]. The Newmark method is a universal
and reliable method that makes use of displacement, velocity, and acceleration at
the previous time step. However, it may require longer calculation time compared
to the Houbolt method, which is an algorithm that involves a starting procedure.
The system does not decouple when the Houbolt method is applied. The Houbolt
method is an implicit method, whereas the Newmark method can be implicit or
explicit depending on the choice of the parameters. Furthermore, the Houbolt
method is a three-step method, and it is shown to be unconditionally stable [49].

Equation (3.29) can be used to solve static bending, and free and forced
vibrations problems of functionally graded micro-beams. For the static problem
{ü} = 0 and we have:

(3.31) [A]{u} = [G]{N}+ {f}.

The solution of Eq. (3.31) yields static nodal displacements and unknown natural
boundary values. For the free vibration problem we take {f} = 0, and assume
that {u(x, t)} = {U(x)} exp(iΩt). From Eqs. (2.22)–(2.25), we conclude that
{N} = {N∗} exp(iΩt). Substitution of these expressions back into Eq. (3.29)
yields:

(3.32) ([A]{U} − [G]{N∗})eiΩt + Ω2[S]{Ü}eiΩt = 0.

This is an eigenvalue problem whose solution yields natural frequencies and cor-
responding mode-shapes for free vibrations of functionally graded micro-beams.

4. Numerical results

The geometry of the functionally graded beam considered in parametric
analyses is shown in Fig. 1. The micro-beam is assumed to be a mixture of
ceramic and metal. One of the approximate ways of calculating elastic properties
of functionally graded materials is the use of a micromechanics approach such as
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the Mori–Tanaka model [50], which gives the bulk modulus of a two-phase com-
posite consisting of spherical inclusions in a matrix material. The approximation
stems from the fact that the concept of a representative volume element (RVE)
cannot be unique for functionally graded materials [51]. This is a consequence of
spatial variations in all material properties. However, as illustrated in previous
studies, the Mori–Tanaka method can be used to evaluate the elastic properties
with reasonable accuracy. For example, the article by Shen and Wang [52] in-
dicates that the difference between free vibration analysis results generated by
Voigt and Mori–Tanaka micromechanics models is either very small or negligible.
For this reason, the Mori–Tanaka micromechanics model is commonly used in
vibration analyses of FGMs [53–55]. The length scale parameter in small-scale
analyses is primarily defined as a representative size of small-scale effect near an
interface, a surface, or a singular point such as a crack [56]. The RVE size of any
micromechanics model is expected to be smaller than the length scale parameter.
Since the Mori–Tanaka approach is not extended for small-scale effects, a rule of
mixtures type representation is adopted to describe the variation in the length
scale parameter.

Thus, modulus of elasticity and Poisson’s ratio of the graded beam are com-
puted in accordance with the Mori–Tanaka micromechanics model [50], and ex-
pressed as:

E(z) =
9Be(z)µe(z)

3Be(z) + µe(z)
,(4.1)

ν(z) =
3Be(z)− 2µe(z)

6Be(z) + 2µe(z)
,(4.2)

where Be and µe are respectively, effective bulk modulus and shear modulus;
and written as follows:

Be(z) =
Vc(z)(Bc −Bm)

1 +
(Bc −Bm)Vm(z)

(4µm)/3 +Bm

+Bm,(4.3)

µe(z) =
Vc(z)(µc − µm)

1 +
(µc − µm)Vm(z)

{µm + ((9Bm + 8µm)µm)/(6(Bm + 2µm))}

+ µm.(4.4)

Subscripts c andm in Eqs. (4.3) and (4.4) designate ceramic and metallic phases;
and V stands for the volume fraction. Rule of mixtures is used to represent
variations of mass density and length scale parameter in the following forms:

ρ(z) = ρmVm(z) + ρcVc(z),(4.5)
l(z) = lmVm(z) + lcVc(z).(4.6)



318 I. Eshraghi, S. Dag

Spatial variation in the ceramic volume fraction is represented by a power func-
tion:

(4.7) Vc(z) =

(
z

h
+

1

2

)λ
.

The exponent λ is defined as power-law index. Sum of the volume fractions is
equal to one, i.e.,

(4.8) Vc(z) + Vm(z) = 1.

Thus, the beam is 100% metallic at z = −h/2, and 100% ceramic at z = h/2.
Metallic and ceramic components of the FGM beam are assumed to be aluminum
(Al) and silicon carbide (SiC), properties of which are given as:

Em = 70GPa, νm = 0.3, ρm = 2702 kg/m3, lm = 15µm,(4.9)

Ec = 427GPa, νc = 0.17, ρc = 3100 kg/m3.(4.10)

The length scale parameter ratio lc/lm is varied in parametric analyses to exam-
ine its effect on the dynamic response of the micro-beam. Geometric properties
of the micro-beam are specified as:

(4.11) h = 30µm, b = 2h, L = 10h, κs = 5/6.

4.1. Verification

The accuracy of the static bending solution is verified by comparing our re-
sults regarding static deflection of a small-scale functionally graded beam pinned
at both ends and subjected to uniformly distributed loading to those found
through the differential quadrature method (DQM), and given by Aghazadeh
et al. [39]. Material properties of the beam are given by Eqs. (4.9) and (4.10).
The results are provided in Fig. 3. There is excellent agreement between our
results and those given by Aghazadeh et al. [39].

A second set of comparisons is generated considering the results available in
the literature for natural frequencies of functionally graded micro-beams. Table 1
shows the comparisons of dimensionless natural frequencies to those provided by
Ansari et al. [57] and Aghazadeh et al. [39]. The dimensionless natural fre-
quency is ω = ΩL

√
I10/A110 where Ω is the natural frequency of the beam and

A110 and I10 are respectively reference values of A11 and I1 evaluated by consid-
ering a fully metallic homogeneous beam. The frequencies presented correspond
to the transverse deformation mode of the micro-beam. Results of first and fifth
frequencies are compared with those reported in [39] and [57]. Results of sec-
ond to fourth dimensionless natural frequencies are also reported in the table.
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Fig. 3. Comparison of the static deflection curves for a functionally graded micro-beam with
L/h = 10, lm = 15µm , h/lm = 2, b/h = 2, lc/lm = 3/2, λ = 2.

The material length scale parameter is assumed to be constant and is taken as
lc = lm = 15µm. Again, almost an exact correspondence is observed between
the results of present paper with those given in [39] and [57]. The maximum
relative difference between the results of the current study and those reported
in [57] is 1.7% for the first mode and 1.33% for the fifth mode. These differences
are calculated for a pure metallic beam. For all other material distributions,
the relative differences between our results and those given in [57] are less than
0.07%. However, the results of current study are in complete agreement with
those reported in [39].

Table 1. Comparisons of the dimensionless natural frequency ω = ΩL
√
I10/A110

corresponding to the transverse deformation mode of FGM micro-beams with
lc = lm = 15µm, h/l = 2, L/h = 10.

Mode Study
Material Type Maximal

relative
difference

(%)
Pure

ceramic
FGM

(λ = 0.1)
FGM

(λ = 0.6)
FGM

(λ = 1.2)
FGM
(λ = 2)

FGM
(λ = 10)

Pure
metal

First
[57] 0.8538 0.7619 0.6084 0.5470 0.5100 0.4332 0.3863 1.7
[39] 0.8538 − 0.6084 0.5469 0.5099 − 0.3797 0

Present 0.8538 0.7624 0.6084 0.5469 0.5099 0.4330 0.3797 –
Second Present 3.2551 2.9075 2.3167 2.0772 1.9306 1.6269 1.4323 –
Third Present 6.8575 6.1276 4.8744 4.3570 4.0344 3.3684 2.9789 –
Fourth Present 11.3360 10.1335 8.0502 7.1748 6.6200 5.4775 4.8636 –

Fifth
[57] 16.4672 14.7194 11.6879 10.3919 9.5590 7.8479 7.0831 1.33
[39] 16.4671 − 11.6880 10.3916 9.5585 − 6.9886 0

Present 16.4671 14.7264 11.6880 10.3916 9.5585 7.8452 6.9886 –



320 I. Eshraghi, S. Dag

The dynamic beam response is examined for three different types of loading
including distributed, concentrated, and impulsive loads. Forcing functions are
expressed as follows:

q = q0H(t) for distributed step loading,(4.12)
q = Pδ(x− x0) sin(ωpt) for concentrated harmonic loading,(4.13)
q = Pδ(x− x0)δ(t) for concentrated impulsive loading,(4.14)

where H(t) is the unit step function.
Calculation of the response for impulsive loading involves two steps. First the

temporal derivative of {u} at t = 0, i.e. {u̇(x, 0)}, is obtained by time integration
of Eq. (3.31) from t = 0− to t = 0+:

(4.15)
0+∫

0−

([A]{u}) dt =

0+∫
0−

([S]{ü}+ [G]{N}+ {f}) dt,

{u} and {N} are finite and their time integral in Eq. (4.15) is equal to zero.
Since the loading is impulsive, {f} = {f∗}δ(t), and we may write:

(4.16) [S]({u̇}0+ − {u̇}0−) = −
0+∫

0−

{f∗}δ(t) dt = −{f∗},

where {f∗} is the spatially discretized form of the concentrated impulsive force,
and is given in Appendix C. Also, note that {u̇}0− = {0}. Solution of Eq. (4.16)
yields {u̇(x, 0)}. Designating {u(x, 0)} and {u̇(x, 0)} by u0 and u̇0, respectively,
and utilizing the backward central difference method, the following relations are
derived to approximate u−1 and u−2 in the initialization of the Houbolt method:

u−1 = u0 − u̇0∆t,(4.17)
u−2 = u0 − 2u̇0∆t.(4.18)

Since analytical results regarding forced vibrations of micro-beams are not
available in the literature, the verification study for forced vibrations is carried
out by considering the analytical results provided for homogeneous macro-scale
beams by Garcia and Villaça [58]. These results are reported in [1]. The
homogeneous beam has the following properties:

E = 50GPa, ρ = 2500 kg/m3, ν = 0.2,(4.19)
L = 4m, h = 0.6m, b = 0.2m, κs = 5.6.(4.20)
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The length scale parameter is taken as zero. Figure 4 presents the comparison
of the time variation of mid-point deflection w(L/2, t) of the homogeneous beam
pinned at both ends computed by D-BEM to that evaluated by the analytical
formula for different loading types. For distributed step loading in Fig. 4a, q0 is
taken as 100 kN/m. 16 cells are used in discretization, and time step is taken as
4×10−5 s. The developed method produces results with high degree of accuracy,
which is evident from the excellent agreement between the two sets of results.
Highly accurate results are also computed for concentrated harmonic loading as
shown in Fig. 4b.The number of cells and the time step are the same as those used
for distributed loading. The magnitude of the concentrated force is 2×105 N, and
acts at x0 = L/2 with a frequency of ωP = 500Hz. A time response of the beam
for the impulsive force with an amplitude of P = 100N · s applied at x0 = L/2 is

(a) (b)

(c)

Fig. 4. Dynamic responses generated by D-BEM and the analytical formula for
a pinned-pinned homogeneous beam under (a) distributed step loading with q0 = 100 kN/m,

(b) concentrated harmonic loading with P = 0.2MN, ωP = 500Hz, x0 = L/2, and
(c) impulsive loading with P = 100N · s, x0 = L/2.
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depicted in Fig. 4c. In this case, a total of 64 cells are used, and time-step is set
as 10−6 s. Again an excellent agreement is observed, which is indicative of the
high level accuracy achieved by the application of the domain-boundary element
method.

4.2. Parametric analyses

In this section, we present the numerical results generated for forced vibra-
tions of functionally graded micro-beams with a variable length scale parameter.
Dynamic loading functions are the same as those given by Eqs. (4.12)–(4.14). In
all computations, the micro-beam is assumed to be pinned at both ends.

First, convergence characteristics of the developed technique are investigated.
The variation of the mid-point deflection w(L/2, t) of an FGM micro-beam, sub-

(a) (b)

(c)

Fig. 5. Dynamic deflection of an FGM micro-beam with λ = 0.5, and lc/lm = 1.0 for
different values of M and subjected to (a) distributed step loading with q0 = 100N/m,

(b) concentrated harmonic loading with P = 0.01N, x0 = L/2, ωP = 5MHz, and
(c) impulsive loading with P = 0.001µN · s, x0 = L/2.
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jected to uniformly distributed step loading and concentrated harmonic load-
ing are depicted in Figs. 5a and 5b, respectively. The results are generated by
changing the total cell number M . Load intensities are taken as q0 = 1 kN/m,
and P = 0.01N. Inhomogeneity exponent is λ = 0.5 and the length scale pa-
rameter ratio is set as lc/lm = 1.0. Rapid convergence is observed as the number
of cells is increased from 2 to 16. For impulsive loading with an intensity of
P = 0.001µN · s, the use of 64 cells assures the convergence as shown in Fig. 5c.
Hence, in the parametric analyses presented in this section, number of cells em-
ployed in discretization is 16 for distributed and concentrated harmonic loads,
and 64 for impulsive forcing.

The time step ∆t has to be taken sufficiently small to assure a stable numer-
ical solution procedure. Convergence studies conducted indicate that the time
step should be taken as 1 × 10−5 s for distributed and harmonic loads, whereas
for impulsive loading it should be equal to 1× 10−6 s.

Figures 6–8 depict the dynamic response of a functionally graded micro-
beam for different values of the power-law index λ. The figures show the time
histories of mid-point deflection w(L/2, t) and normal stress σxx(L/2, h/2, t).
The functionally graded micro-beam is ceramic-rich when λ < 1, and metal-rich
when λ > 1. Figure 6 presents deflection and stress for a micro-beam subjected to
distributed step loading. Under this type of loading, both deflection and stress
possess constant-amplitude harmonic variations. Forced vibration amplitudes
increase and the vibration frequency decreases as λ gets larger. Figure 7 shows w
and σxx variations for an FGMmicro-beam subjected to a concentrated harmonic
force. The vibration amplitude again gets larger as the inhomogeneity index λ
is increased from 0.5 to 5. This is due to the drop in the micro-beam stiffness.
Results pertaining to impulsive loading are provided in Fig. 8. Since impulsive

(a) (b)

Fig. 6. Dynamic response of an FGM micro-beam under distributed step loading.
q0 = 100N/m, and lc/lm = 3/2.
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(a) (b)

Fig. 7. Dynamic response of an FGM micro-beam under concentrated harmonic excitation.
P = 0.01N, ωP = 5MHz, x0 = L/2. and lc/lm = 3/2.

(a) (b)

Fig. 8. Dynamic response of an FGM micro-beam subjected to impulsive loading.
P = 0.001µN · s, x0 = L/2, and lc/lm = 3/2.

loads have a wider range of frequencies, response functions are not as smooth
as those generated for distributed and concentrated forces. Figure 8 indicates
that compared to the vertical deflection w,normal stress σxx possesses higher
frequency variations. This results from the dependence of σxx on derivatives
∂u/∂x and ∂ϕ/∂x. Higher frequency behaviors of these derivatives cause the
normal stress to follow a similar pattern.

The effect of length scale parameter ratio lc/lm on the deflection and stress
of an FGM micro-beam is examined in Figs. 9–11. It is seen that an increase in
lc/lm from 1/3 to 2 causes a drop in the amplitude of forced vibrations and an
increase in the response frequency. Thus, it can be concluded that the increase
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(a) (b)

Fig. 9. Dynamic response of an FGM micro-beam under distributed step loading for
different values of lc/lm. q0 = 100N/m, and λ = 2.

(a) (b)

Fig. 10. Dynamic response of an FGM micro-beam under concentrated harmonic excitation
for different values of lc/lm; P = 0.01N, ωP = 5MHz, x0 = L/2, and λ = 2.

in the length scale parameter ratio lowers deflection and stress levels in graded
micro-beams. Again, since impulsive loads have a wider range of frequencies,
response functions for this forcing type are not as smooth as those generated for
distributed and concentrated forcings.

The effect of the length scale parameter ratio on the deviatoric part of the
couple stress tensor is examined in Fig. 12. The figure shows that the increase in
the length scale parameter ratio causes a corresponding increase in the amplitude
of a couple stress component. Under all three loading conditions, the deviatoric
part of the couple stress tensor for lc/lm = 2 is significantly larger than that
calculated for lc/lm = 1/3. This is in contrast with the behavior observed for
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(a) (b)

Fig. 11. Dynamic response of an FGM micro-beam subjected to impulsive loading for
different values of lc/lm; P = 0.001µN · s, x0 = L/2, and λ = 2.

(a) (b)

(c)

Fig. 12. Effect of length scale parameter ratio onmxyfor an FGM micro-beam with λ = 2, and
under (a) distributed step loading with q0 =100N/m, (b) concentrated harmonic loading with
P =0.01N, ωP =5MHz, x0 =L/2, and (c) impulsive loading with P = 0.001µN · s, x0 =L/2.
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the normal stress σxx, which in general decreases significantly as the length scale
parameter ratio is increased.

5. Concluding remarks

A domain-boundary element method is developed to examine transient dy-
namic behavior of functionally graded micro-beams. Small-scale effects are ac-
counted for by applying the modified couple stress theory. Static fundamental
solutions are used to express the weighted residual statements for the governing
partial differential equations. The weighted residual statements are converted to
a system of integral equations, which is reduced to a system of ordinary differen-
tial equations in time. The differential equation system is solved numerically by
means of the Houbolt method. Presented numerical results illustrate the effects
of material inhomogeneity and the length scale parameter ratio on the forced
vibration behavior of FGM micro-beams.

Developed procedures are verified by comparisons to the results generated
by analytical and numerical methods in the literature. Our results generated by
D-BEM are shown to be in excellent agreement with those provided in the cited
references. Thus, we conclude that the domain-boundary method is a reliable and
accurate way of carrying out forced vibration analysis of micro-scale functionally
graded beams. In addition to the verification study, convergence studies are
performed to determine the number of cells to be used in domain discretization,
and the time step to be applied in the numerical solution. A larger number of
cells and a smaller time step is found to be required for dynamic analysis under
impulsive loading.

Numerical results presented show that, as the power-law index λ is increased,
displacement and normal stress amplitudes for an FGM micro-beam also in-
crease. This implies that metal-rich beams undergo larger displacements, and are
subjected to larger stresses. The functionally graded micro-beam vibrates with
the frequency of applied load under harmonic excitation. An impulsive force, on
the other hand, has a range of frequency, and this is reflected in time histories
of displacements and stresses. The influence of the small-scale parameter lc/lm,
which is named the length scale parameter ratio, is also examined. An increase
in this parameter leads to smaller displacement and normal stress amplitudes.
This trend is reversed for the deviatoric part of the couple stress tensor, i.e.,
increase in the lc/lm value results in a larger mxy magnitude.

The method proposed in this study can be applied to solve static bending,
and free and forced vibration problems involving functionally graded macro-
and micro-scale beams. Shear deformation of the beam is considered by using
the Timoshenko beam theory. Variations of all material properties including the
length scale parameter are taken into account in the formulation. Thus, the
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method will be particularly useful in design, analysis, and optimization studies
involving graded micro-beams under transient dynamic effects. The presented
procedure may also serve as the first step towards future developments regarding
transient dynamic analysis of micro-scale plates and shells.

Appendix A. Matrix form of governing equations of motion

Equation (3.29) may be expressed as follows:

(A.1)

Hbb
uu 0 0 Hbb

uϕ 0 0 0 0
0 Hbb

ww Hbb
ww,x

Hbb
wϕ + Pbbwϕ 0 0 0 Pbdwϕ

0 0 Hbb
w,xw,x

Hbb
w,xϕ + Pbbw,xϕ 0 0 0 Pbdw,xϕ

Hbb
ϕu + Pbbϕu Hbb

ϕw + Pbbϕw Hbb
ϕw,x

Hbb
ϕϕ Pbdϕu Pbdϕw 0 0

Hdb
uu 0 0 Hdb

uϕ I 0 0 Hdd
uϕ

0 Hdb
ww Hdb

ww,x
Hdb
wϕ + Pdbwϕ 0 I 0 Pddwϕ

0 0 Hdb
w,xw,x

Hdb
w,xϕ

+ Pdbw,xϕ
0 0 I I + Pddw,xϕ

Hdb
ϕu + Pdbϕu Hdb

ϕw + Pdbϕw Hdb
ϕw,x

Hdb
ϕϕ Hdd

ϕu + Pddϕu Pddϕw Hdd
ϕw,x

I





ub

wb

wb
,x

ϕb

ud

wd

wd
,x

ϕd



=



Sbbuu 0 0 Sbbuϕ Sbduu 0 0 Sbduϕ
0 Sbbww 0 0 0 Sbdww 0 0
0 Sbbw,xw 0 0 0 Sbdw,xw 0 0

Sbbϕu 0 0 Sbbϕϕ Sbdϕu 0 0 Sbdϕϕ
Sdbuu 0 0 Sdbuϕ Sdduu 0 0 Sdduϕ
0 Sdbww 0 0 0 Sdbww 0 0
0 Sdbw,xw 0 0 0 Sddw,xw 0 0

Sdbϕu 0 0 Sdbϕϕ Sddϕu 0 0 Sddϕϕ





üb

ẅb

ẅb
,x

ϕ̈b

üd

ẅd

ẅd
,x

ϕ̈d



+



Gbb
uu 0 0 0
0 Gbb

ww Gbb
ww,x 0

0 Gbb
w,xw Gbb

w,xw,x 0
0 0 0 Gbb

ϕϕ

Gdb
uu 0 0 0
0 Gdb

ww Gdb
ww,x 0

0 Gdb
w,xw Gdb

w,xw,x 0
0 0 0 Gdb

ϕϕ




Nb

Qb

Rb

Mb

+



0
f b

mb

0
0
fd

md

0


.

The superscripts b and d respectively stand for boundary and domain. Thus,
ub, wb, wb

,x, and ϕb are generalized displacements of boundary nodes; and ud,
wd, wd

,x, and ϕd are generalized displacements of internal nodes. Nb, Qb, Rb,

and Mb are respectively axial force, shear force, and bending moment vectors
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at the boundary nodes. The vectors f b, mb, and fd, md are nodal external load
vectors. The sub-matrices computed at the boundary are defined as given below:

Hbb
uu =

1

2

[
1 −1
−1 1

]
,(A.2)

Hbb
uϕ =

B11

2A11

[
−1 1
1 −1

]
,(A.3)

Hbb
ww =

1

2

[
1 −1
−1 1

]
,(A.4)

Hbb
w,xw,x =

1

2

[
1 − cosh[

√
Λw L]

− cosh[
√

Λw L] 1

]
,(A.5)

Hbb
w,xϕ =

1

2

[
1 − cosh[

√
Λw L]

− cosh[
√

Λw L] 1

]
,(A.6)

Hbb
ϕu =

B11

2(D11 +A552/4)

[
−1 cosh(

√
Λϕ L)

cosh(
√

Λϕ L) −1

]
,(A.7)

Hbb
ϕw =

√
Λϕ sinh(

√
Λϕ L)

2

(
1 +

A552/4

D11 +A552/4

)[
0 1
−1 0

]
,(A.8)

Hbb
ϕw,x =

√
Λϕ sinh(

√
Λϕ L)

2

[
0 1
−1 0

]
,(A.9)

Hbb
ϕϕ =

1

2

[
1 − cosh(

√
Λϕ L)

− cosh(
√

Λϕ L) 1

]
,(A.10)

Gbb
uu =

L

2A11

[
0 1
−1 0

]
,(A.11)

Gbb
ww =

1

κsF55

[
L

2
− sinh(

√
Λw L)

2
√

Λw

][
0 1
−1 0

]
,(A.12)

Gbb
ww,x =

1− cosh(
√

Λw L)

2κsF55

[
0 1
1 0

]
,(A.13)

Gbb
w,xw = − 1

κsF55

[
1

2
− cosh(

√
Λw L)

2

][
0 1
1 0

]
,(A.14)

Gbb
w,xw,x =

√
Λw sinh(

√
Λw L)

2κsF55

[
0 1
−1 0

]
,(A.15)

Gbb
ϕϕ =

sinh(
√

Λϕ L)

2
√

Λϕ(D11 +A552/4)

[
0 1
−1 0

]
.(A.16)

Domain dependent sub-matrices that do not involve domain integrals are of the
forms:



330 I. Eshraghi, S. Dag

Hdb
uu = −1

2
[1 1],(A.17)

Hdb
uϕ =

B11

2A11
[1 1],(A.18)

Hdd
uϕ = −B11

A11
I,(A.19)

Hdb
ww = −1

2
[1 1],(A.20)

Hdb
ww,x =

1

2
√

Λw

[
− sinh[

√
Λwξk] sinh[

√
Λw(L−ξk)

]]
,(A.21)

Hdb
wϕ =

1

2
√

Λw

[
− sinh[

√
Λwξk] sinh[

√
Λw(L−ξk)]

]
,(A.22)

Hdb
w,xw,x = −1

2

[
cosh[

√
Λwξk] cosh[

√
Λw(L−ξk)]

]
,(A.23)

Hdb
w,xϕ = −1

2

[
cosh[

√
Λwξk] cosh[

√
Λw(L−ξk)]

]
,(A.24)

Hdb
ϕu =

B11

2(D11+A552/4)

[
cosh(

√
Λϕξk) cosh[

√
Λϕ(L−ξk)]

]
,(A.25)

Hdb
ϕw =

√
Λϕ

2

(
1+

A552/4

D11+A552/4

)
(A.26)

×
[
− sinh(

√
Λϕξk) sinh[

√
Λϕ(L−ξk)]

]
,

Hdb
ϕw,x = − A552/4

2(D11+A552/4)

[
cosh(

√
Λϕξk) cosh[

√
Λϕ(L−ξk)]

]
,(A.27)

Hdb
ϕϕ = −1

2

[
cosh(

√
Λϕξk) cosh[

√
Λϕ(L−ξk)]

]
,(A.28)

Hdd
ϕu = − B11

D11+A552/4
I,(A.29)

Hdd
ϕw,x =

A552/4

D11+A552/4
I,(A.30)

Gdb
uu =

1

2A11

[
−ξk (L−ξk)

]
,(A.31)

Gdb
ww =

1

2κsF55
(A.32)

×
[
−
(
ξk−

sinh[
√

Λwξk]√
Λw

) (
(L−ξk)−

sinh[
√

Λw(L−ξk)]√
Λw

)]
,

Gdb
ww,x =

1

2κsF55

[
(1−cosh[

√
Λw ξk]) (1−cosh[

√
Λw (L−ξk)

])]
,(A.33)

Gdb
w,xw =

1

2κsF55

[
(1−cosh[

√
Λw ξk]) −(1−cosh[

√
Λw (L−ξk)])

]
,(A.34)
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Gdb
w,xw,x =

√
Λw

2κsF55

[
− sinh[

√
Λw ξk] sinh[

√
Λw (L−ξk)]

]
,(A.35)

Gdb
ϕϕ =

1

2
√

Λϕ(D11+A552/4)

[
− sinh[

√
Λϕ ξk] sinh[

√
Λϕ (L−ξk)]

]
,(A.36)

where I is the identity matrix of size (N − 2)× (N − 2).

Appendix B. Domain-dependent sub-matrices

The domain integrals in Eqs. (3.20)–(3.23) are needed in the construction of
submatrices S and P in Eq. (A.1). Utilizing Eqs. (3.4)–(3.6) and (3.24)–(3.26),
these domain integrals are expressed as:

xj3∫
xj1

|x− ξk|
2

ζ(x, t) dx = [mkj
1 mkj

2 mkj
3 ]


ζj1
ζj2
ζj3

 ,(B.1)

xj3∫
xj1

sgn(x− ξk)
2

ζ(x, t) dx = [pkj1 pkj2 pkj3 ]


ζj1
ζj2
ζj3

 ,(B.2)

xj3∫
xj1

sgn(x− ξk)
2

cosh(
√

Λ |x− ξk|)ζ(x, t) dx =
[
p̄kj1 p̄kj2 p̄kj3

]
ζj1
ζj2
ζj3

 ,(B.3)

xj3∫
xj1

sinh(
√

Λ |x− ξk|)
2
√

Λ
ζ(x, t) dx =

[
m̄kj

1 m̄kj
2 m̄kj

3

]
ζj1
ζj2
ζj3

 ,(B.4)

where ζ(x, t) could be unknown displacement functions or their second time
derivative and ζji is the value of ζ at the ith node of the jth cell at time t. Note
that Λ in Eqs. (B.3) and (B.4) takes the values of Λw or Λϕ depending on the
domain integral being evaluated.

There are three possibilities regarding the relative position of the source
node ξk with respect to the element Ωj = [xj1, x

j
3]. These are ξk ≤ xj1; ξk ≡ xj2;

and ξk ≥ xj3. For ξk ≤ x
j
1, we get the following expressions:

mkj
1 =

(xj1 − ξk)hc
6

, mkj
2 =

2(xj2 − ξk)hc
3

, mkj
3 =

(xj3 − ξk)hc
6

,(B.5)

pkj1 =
hc
6
, pkj2 =

2hc
3
, pkj3 =

hc
6
,(B.6)
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p̄kj1 =
1

4Λ3/2h2
c

{
2 sinh[

√
Λ(xj3 − ξk)]− 2(1 + Λh2

c) sinh[
√

Λ(xj1 − ξk)](B.7)

−
√

Λhc
{

3 cosh[
√

Λ(xj1 − ξk)] + cosh[
√

Λ(xj3 − ξk)]
}}
,

p̄kj2 =
1

Λ3/2h2
c

{
sinh[

√
Λ(xj1 − ξk)]− sinh[

√
Λ(xj3 − ξk)](B.8)

+
√

Λhc

{
cosh[

√
Λ(xj1 − ξk)] + cosh[

√
Λ(xj3 − ξk)]

}}
,

p̄kj3 =
1

4Λ3/2h2
c

{
2(1 + Λh2

c) sinh[
√

Λ(xj3 − ξk)]− 2 sinh[
√

Λ(xj1 − ξk)](B.9)

−
√

Λhc{cosh[
√

Λ(xj1 − ξk)] + 3 cosh[
√

Λ(xj3 − ξk)]}},

m̄kj
1 =

1

4Λ2h2
c

{
2 cosh[

√
Λ(xj3 − ξk)]− 2(1 + Λh2

c) cosh[
√

Λ(xj1 − ξk)](B.10)

−
√

Λhc{3 sinh[
√

Λ(xj1 − ξk)] + sinh[
√

Λ(xj3 − ξk)]}
}
,

m̄kj
2 =

1

Λ2h2
c

{
cosh[

√
Λ(xj1 − ξk)]− cosh[

√
Λ(xj3 − ξk)](B.11)

+
√

Λhc{sinh[
√

Λ(xj1 − ξk)] + sinh[
√

Λ(xj3 − ξk)]}
}
,

m̄kj
3 =

1

4Λ2h2

{
2(1 + Λh2) cosh[

√
Λ(xj3 − ξk)]− 2 cosh[

√
Λ(xj1 − ξk)](B.12)

−
√

Λh{sinh[
√

Λ(xj1 − ξk)] + 3 sinh[
√

Λ(xj3 − ξk)]}
}
.

For the case of ξk ≡ xj2, we obtain:

mkj
1 =

h2
c

8
, mkj

2 =
h2
c

4
, mkj

3 =
h2
c

8
,(B.13)

pkj1 = −hc
4
, pkj2 = 0, pkj3 =

hc
4
,(B.14)

p̄kj1 =
1

2Λhc

[
cosh(

√
Λhc)−

√
Λhc sinh(

√
Λhc)− 1

]
,(B.15)

p̄kj2 = 0,(B.16)

p̄kj3 =
1

2Λhc
[
√

Λhc sinh(
√

Λhc)− cosh(
√

Λhc) + 1],(B.17)

m̄kj
1 =

1

2Λ2h2
c

{
(2 + Λh2

c) cosh(
√

Λhc)− 2[1 +
√

Λhc sinh(
√

Λhc)]
}
,(B.18)

m̄kj
2 =

1

Λ2h2
c

{
2[1− cosh(

√
Λhc) +

√
Λhc sinh(

√
Λhc)]− Λh2

c

}
,(B.19)



Transient dynamic analysis of functionally graded. . . 333

m̄kj
3 =

1

2Λ2h2
c

{
(2 + Λh2

c) cosh(
√

Λhc)− 2[1 +
√

Λhc sinh(
√

Λhc)]
}
.(B.20)

Expressions valid for ξk ≥ xj3 are negatives of those found for ξk ≤ xj1.

Appendix C. Load vectors

Three different types of loading are considered in parametric analyses, which
are distributed step, concentrated harmonic, and concentrated impulsive loads.
For uniformly distributed loading with intensity q, load vectors are given by:

f b = −
q
(
L2

2 + 1
Λw

[1− cosh(
√

Λw L)]
)

2κsF55

{
1
1

}
,(C.1)

fd = − q

2κsF55
(C.2)

×



ξ22+(L−ξ2)2

2 + 1
Λw
{2− cosh[

√
Λw(L− ξ2)]− cosh[

√
Λw ξ2]}

ξ23+(L−ξ3)2

2 + 1
Λw
{2− cosh[

√
Λw(L− ξ3)]− cosh[

√
Λw ξ3]}

...
ξ2N−1+(L−ξN−1)2

2 + 1
Λw
{2− cosh[

√
Λw(L− ξN−1)]− cosh[

√
Λw ξN−1]}


,

mb = −
q(−L+ 1√

Λw
sinh(

√
Λw L))

2κsF55

{
1
−1

}
,(C.3)

md = − q

2κsF55
(C.4)

×



2ξ2 − L+ 1√
Λw

{
sinh[

√
Λw(L− ξ2)]− sinh[

√
Λw ξ2]

}
2ξ3 − L+ 1√

Λw

{
sinh[

√
Λw(L− ξ3)]− sinh[

√
Λw ξ3]

}
...

2ξN−1 − L+ 1√
Λw

{
sinh[

√
Λw(L− ξN−1)]− sinh[

√
Λw ξN−1]

}


.

For a concentrated force P applied at x = x0, the vectors are written as:

f b = − P

2κsF55

{
x0 − 1√

Λw
sinh(

√
Λw x0)

L− x0 − 1√
Λw

sinh[
√

Λw(L− x0)]

}
,(C.5)

fd = − P

2κsF55


|ξ2 − x0| − 1√

Λw
sinh[

√
Λw |ξ2 − x0|]

|ξ3 − x0| − 1√
Λw

sinh[
√

Λw |ξ3 − x0|]
...

|ξN−1 − x0| − 1√
Λw

sinh[
√

Λw |ξN−1 − x0|]

 ,(C.6)
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mb = − P

2κsF55

{
1− cosh(

√
Λw x0)

−1 + cosh[
√

Λw(L− x0)]

}
,(C.7)

md = − P

2κsF55


sgn(ξ2 − x0){−1 + cosh[

√
Λw |ξ2 − x0|]}

sgn(ξ3 − x0){−1 + cosh[
√

Λw |ξ3 − x0|]}
...

sgn(ξN−1 − x0){−1 + cosh[
√

Λw |ξN−1 − x0|]}

 .(C.8)
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