PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Faults Classification Of Power Electronic Circuits Based On A Support Vector Data Description Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Power electronic circuits (PECs) are prone to various failures, whose classification is of paramount importance. This paper presents a data-driven based fault diagnosis technique, which employs a support vector data description (SVDD) method to perform fault classification of PECs. In the presented method, fault signals (e.g. currents, voltages, etc.) are collected from accessible nodes of circuits, and then signal processing techniques (e.g. Fourier analysis, wavelet transform, etc.) are adopted to extract feature samples, which are subsequently used to perform offline machine learning. Finally, the SVDD classifier is used to implement fault classification task. However, in some cases, the conventional SVDD cannot achieve good classification performance, because this classifier may generate some so-called refusal areas (RAs), and in our design these RAs are resolved with the one-against-one support vector machine (SVM) classifier. The obtained experiment results from simulated and actual circuits demonstrate that the improved SVDD has a classification performance close to the conventional one-against-one SVM, and can be applied to fault classification of PECs in practice.
Rocznik
Strony
205--220
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
  • Nanjing University of Aeronautics and Astronautics, College of Automation Engineering, Nanjing City, Jiangsu Province, 211100, China
Bibliografia
  • [1] Lu, B., Sharma, S. (2009). A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Trans. Ind. Appl., 45(5), 1770-1777.
  • [2] Ribeiro, R., Jacobina, C., Silva, E., Lima, A. (2003). Fault detection of open-switch damage in voltage-fed PWM motor drive systems. IEEE Trans. Power Electr., 18(2), 587-593.
  • [3] Khanniche, M., Ibrahim, M. (2004). Wavelet-fuzzy-based algorithm for condition monitoring of voltage source inverter. Electron. Lett., 40(4), 267-268.
  • [4] Wang, R., Zhan, Y., Zhou, H., Cui, B. (2013). A fault diagnosis method for three-phase rectifiers. Int. J. Elec. Power, 52, 266-269.
  • [5] Cunningham, P. (Jul. 1998). A case study on the use of model-based systems for electronic fault diagnosis. Artif. Intel. Eng., 12(3), 283-295.
  • [6] Kim, S., Nam, K., Song, H., Kim, H. (2008). Fault diagnosis of a ZVS DC–DC converter based on DC-Link current pulse shapes. IEEE Trans. Ind. Electr., 55(3), 1491-1494.
  • [7] Amaral, A., Cardoso, A. (2012). On-line fault detection of aluminum electrolytic capacitors, in step-down DC-DC converters, using input current and output voltage ripple. IET Power Electr., 5(3), 315-322.
  • [8] Pei, X., Nie, S., Chen, Y., Kang, Y. (2012). Open-circuit fault diagnosis and fault-tolerant strategies for full-bridge DC-DC converters. IEEE Trans. Power Electr., 27(5), 2550-2565.
  • [9] An, Q., Sun, L., Zhao, K., Sun, L. (2011). Switching function model-based fast-diagnostic method of open-switch faults in inverters without sensors. IEEE Trans. Power Electr., 26(1), 119-126.
  • [10] Zidani, F., Diallo, D., Benbouzid, M., Naït-Saïd, R. (2008). A fuzzy-based approach for the diagnosis of fault modes in a voltage-fed PWM inverter induction motor drive. IEEE Trans. Ind. Electron., 55(2), 586-593.
  • [11] Sleszynski, W., Nieznanski, J., Cichowski, A. (2009). Open-transistor fault diagnostics in voltage-source inverters by analyzing the load currents. IEEE Trans. Ind. Electron., 56(11), 4681-4688.
  • [12] Ma, C., Gu, X., Wang, Y. (2009). Fault diagnosis of power electronic system based on fault gradation and neural network group. Neurocomputing, 72(13–15), 2909-2914.
  • [13] Charfi, F., Sellami, F., Al-Haddad, K. (2006). Fault diagnostic in power system using wavelet transforms and neural networks. ISIE, Montreal/Quebec, Canada, 1143-1148.
  • [14] Masrur, M., Chen, Z., Murphey, Y. (2010). Intelligent diagnosis of open and short circuit faults in electric drive inverters for real-time applications. IET Power Electr., 3(2), 279-291.
  • [15] Nejjari, H., Benbouzid, M. (2000). Monitoring and diagnosis of induction motors electrical faults using a current park’s vector pattern learning approach. IEEE Trans. Ind. Appl., 36(3), 730-735.
  • [16] Khomfoi, S., Tolbert, L. (2007). Fault diagnosis and reconfiguration for multilevel inverter drive using AI-based techniques. IEEE Trans. Ind. Electron., 54(6), 2954-2968.
  • [17] Barman, I., Dingari, N.C., Singh, G.P., Soares, J.S., Dasari, R.R., Smulko, J.M. (2012). Investigation of noise-induced instabilities in quantitative biological spectroscopy and its implications for noninvasive glucose monitoring. Analytical Chemistry, 84(19), 8149-8156.
  • [18] Kim, D., Lee, D. (2008). Fault diagnosis of three-phase PWM inverters using wavelet and SVM. ISIE, Cambridge, UK, 329-334.
  • [19] Delpha, C., Chen, H., Diallo, D. (2012). SVM based diagnosis of inverter fed induction machine drive: a new challenge. IECON, Montreal/QC, Canada, 3931-3936.
  • [20] Wang, R., Zhan, Y., Zhou, H. (2012). Application of S transform in fault diagnosis of power electronics circuits. Sci. Iran., 19(3), 721-726.
  • [21] Hu, Z., Gui, W., Yang, C., Deng, P., Ding, S. (2011). Fault classification method for inverter based on hybrid support vector machines and wavelet analysis. Int. J. Control Autom. Syst., 9(4), 797-804.
  • [22] Tax, D., Duin, R. (2004). Support vector data description. Mach. Learn., 54, 45-66.
  • [23] Tax, D., Duin, R. (1999). Support vector domain description. Pattern Recogn. Lett., 20(11-13), 1191-1199.
  • [24] Cortes, C., Vapnik, V. (1995). Support vector networks. Mach. Learn., 20(3), 273-297.
  • [25] Vapnik, V. (1999). An overview of statistical learning theory. IEEE Trans. Neural Networ., 10(5), 988-999.
  • [26] Hsu, C., Lin, C. (2002). A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networ., 13(2), 415-425.
  • [27] Grzechca, D., Rutkowski, J. (2009). Fault diagnosis in analog electronic circuits-the SVM approach. Metrol. Meas. Syst., 16(4), 583-597.
  • [28] Cui, J., Wang, Y. (2010). A novel approach of analog fault classification using a support vector machines classifier. Metrol. Meas. Syst., 17(4), 561-582.
  • [29] Long, B., Tian, S., Wang, H. (2012). Diagnostics of filtered analog circuits with tolerance based on LS-SVM using frequency features. J. Electron., 28(3), 291-300.
  • [30] Cui, J., Wang, Y. (2011). A novel approach of analog circuit fault diagnosis using support vector machines classifier. Measurement, 44(1), 281-289.
  • [31] Kohavi, R., John, G. (1997). Wrappers for feature subset selection. Artif. Intell., 97(1-2), 273-324.
  • [32] Chapelle, O., Haffner, P., Vapnik, V. (Sep. 1999). Support vector machines for histogram-based image classification. IEEE Trans. Neural Networ., 10(5), 1055-1064.
  • [33] Murphey, Y., Masrur, M., Chen, Z., Zha, B. (2006). Model-based fault diagnosis in electric drives using machine learning. IEEE-ASME T. Mech., 11(3), 290-303.
  • [34] Cui, J., Wang, Y. (2011). Analog circuit fault classification using improved one-against-one support vector machines. Metrol. Meas. Syst., 18(4), 569-582.
  • [35] Tadeusiewicz, M., Halgas, S. (2014). Multiple Soft Fault Diagnosis of BJT Circuits. Metrol. Meas. Syst., 21(4), 663-674.
Uwagi
EN
This work was supported by the Fundamental Research Funds for the Central Universities (grant no. NS2014028) of China.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dadb8b26-d16a-4e52-bdad-0279734ff6ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.