PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Bichordites-dominated ichnofabrics from Spanish Pliocene calcarenites: traces of marine life in migrating dunes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A series of Pliocene ichnofabrics is described from the Cuevas Formation, Almería-Níjar Basin of south-eastern Spain, where a thick, cross-stratified, mixed bioclastic-siliciclastic succession is exposed along a laterally continuous section. It records the dynamic conditions of ancient subaqueous dunes during their deposition and the activities of organisms colonizing them. The ichnofabrics are dominated by Bichordites, traces likely made by burrowing sea urchins adapted to live in shifting sand. Ichnofabrics range from those showing weak bioturbation with little else but Bichordites (representing high-energy, continuously migrating dunes) to ichnofabrics featuring a high degree of bioturbation containing a low to moderately diverse ichnofauna (representing more physically stable environments where organisms could gather food in less agitated waters). Strong burrowers like the Bichordites producers could have acted as ecosystem engineers. Piscichnus producers may have preyed on benthic sand-dune organisms. The non-uniform distribution of ichnotaxa in these Pliocene sand dunes, alongside previous studies, suggests that these ancient bioturbating communities may have been similar to those in modern seas.
Rocznik
Strony
art. no. 41
Opis fizyczny
Bibliogr. 174 poz., fot., map.
Twórcy
  • Jagiellonian University, Faculty of Geography and Geology, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, PoIand
  • University of Warsaw, Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, Żwirki i Wigury 101,02-089 Warszawa, PoIand
  • Universidad de Granada, Departamento de Estratigrafía y Paleontologia, Facultad de Ciencias, 18002 Granada, Spain
  • Jagiellonian University, Faculty of Geography and Geology, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, PoIand
Bibliografia
  • 1. Abad, M., Ruiz, F., Pendón, J.G., Tosquella, J., González- Regalado, M.L., 2006. Estructuras de escape y equilibrio asociadas a Conichnus conicus como indicadores de tasas de sedimentación variables en medios litorales tortonienses del SO de España. Geobios, 39: 1-11; https://doi.org/10.1016/j.geobios.2004.07.001
  • 2. Aguirre, J., 1998. El Plioceno del SE de la Península Ibérica (provincia de Almeria). Síntesis estratigráfica, sedimentaria, bioestratigráfica y paleogeográfica. Revista de la Sociedad Geológica de España, 11: 297-315.
  • 3. Aguirre, J., 2017. Amusium cristatum shell beds in the lower Pliocene deposits of Almería-Níjar Basin (SE Spain). Spanish Journal of Palaeontology, 32: 3-16; https://doi.org/10.7203/sjp.32.1.16985
  • 4. Aguirre, J., Sánchez-Almazo, I.M., 2004. The Messinian post-evaporitic deposits of the Gafares area (Almerýěa-Nýějar basin, SE Spain). A new view of the “Lago-Mare” facies. Sedimentary Geology, 168: 71-95; https://doi.org/10.1016Zj.sedgeo.2004.03.004
  • 5. Aguirre, J., Martín, J.M., Braga, J.C., Betzler, C., Berning, B.B., Buckeridge, J.S., 2008. Densely-packed concentrations of sessile barnacles (Cirripedia: Sessilia) from the early Pliocene of SE Spain. Facies, 54: 193-206; https://doi.org/10.1007/s10347-007-0132-2
  • 6. Aguirre, J., Gibert, J.M.de, Puga-Bernabéu, A., 2010. Proximal-distal ichnofabric changes in a siliciclastic shelf, Early Pliocene, Guadalquivir Basin, southwest Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 291 : 328-337; https://doi.org/10.1016/j.palaeo.2010.03.004
  • 7. Aguirre, J., Braga, J.C., Martín, J.M., Betzler, C., 2012. Palaeoenvironmental and stratigraphic significance of Pliocene rhodolith beds and coralline algal bioconstructions from the Carboneras Basin (SE Spain). Geodiversitas, 34: 115-136; https://doi.org/10.5252/g2012n1a7
  • 8. Allen, J.R.L., 1980. Sand waves: a model of origin and internal structure. Sedimentary Geology, 26: 281-328; https://doi.org/10.1016/0037-0738(80)90022-6
  • 9. Aller, R.C., Yingst, J.Y., 1978. Biogeochemistry of tube-dwellings: a study of the sedentary polychaete Amphitrite ornata (Leidy). Journal of Marine Research, 36: 201-254; https://elischolar.library.yale.edu/journal_of_marine_research/1429
  • 10. Ashley, G.M., 1990. Classification of large-scale subaqueous bedforms; a new look at an old problem. Journal of Sedimentary Research, 60: 160-172; https://doi.org/10.2110/jsr.60.160
  • 11. Baniak, G.M., Gingras, M.K., Burns, B.A., Pemberton, G.S., 2014. An example of a highly bioturbated, storm-influenced shoreface deposit: Upper Jurassic Ula Formation, Norwegian North Sea. Sedimentology, 61: 1261-1285; https://doi.org/10.1111/sed.12100
  • 12. Barnes, R.S., Cottrell, L.G., 2024. Do stingray feeding pits enhance intertidal macrobenthic biodiversity? Hydrobiologia, 851: 3403-3412; https://doi.org/10.1007/s10750-024-05504-7
  • 13. Baucon, A., Piazza, M., Cabella, R., Bonci, M.C., Capponi, L., de Carvalho, C.N., Briguglio, A., 2020. Buildings that 'speak’: Ichnological geoheritage in 1930s buildings in Piazza della Vittoria (Genova, Italy). Geoheritage, 12: 1-22; https://doi.org/10.1007/s12371-020-00496-x
  • 14. Bayet-Goll, A., Knaust, D., Daraei, M., Bahrami, N., Bagheri, F., 2021. Rosselia ichnofabrics from the Lower Ordovician of the Alborz Mountains (northern Iran): palaeoecology, palaeobiology and sedimentology. Palaeobiodiversity and Palaeoenvironments, 102: 103-128; https://doi.org/10.1007/s12549-021-00493-0
  • 15. Bayet-Goll, A., Buatois, L.A., Mángano, M.G., Daraei, M., 2022. The interplay of environmental constraints and bioturbation on matground development along the marine depositional profile during the Ordovician Radiation. Geobiology, 20: 233-270; https://doi.org/10.1111/gbi.12473
  • 16. Belaústegui, Z., Gibert, J.M. de, 2013. Bow-shaped, concentrically laminated polychaete burrows: a Cylindrichnus concentricus ichnofabric from the Miocene of Tarragona, NE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 381: 119-127; https://doi.org/10.1016/j.palaeo.2013.04.021
  • 17. Bernardi, M., Boschele, S., Ferretti, P., Avanzini, M., 2010. Echinoid burrow Bichordites monastiriensis from the Oligocene of NE Italy. Acta Palaeontologica Polonica, 55: 479-486; https://doi.org/10.4202/app.2009.0064
  • 18. Blum, A.J, 2007. Controls on long-term drainage development of the Carboneras basin, SE Spain. Ph.D. thesis, University of Plymouth.
  • 19. Boorsma, L.J., 1992. Syn-tectonic sedimentation in a Neogene strike-slip basin containing a staked Gilbert-type delta (SE Spain). Sedimentary Geology, 81: 105-123; https://doi.org/10.1016/0037-0738(92)90059-Z
  • 20. Borsje, B.W., de Vries, M.B., Bouma, T.J., Besio, G., Hulscher, S.J., Herman, P.M., 2009. Modeling bio-geomorphological influences for offshore sandwaves. Continental Shelf Research, 29: 1289-1301; https://doi.org/10.1016/j.csr.2009.02.008
  • 21. Bouma, A.H., Berryhill, H.L., Brenner, R.L., Knebel, H.J., 1982. Confinenfal shelf and epicontinental seaways. AAPG Memoir, 31: 281-327; https://doi.org/10.1306/M31424C10
  • 22. Braga, J.C., Martín, J.M., Betzler, C., Aguirre, J., 2003a. Spit-platform temperate carbonates: The origin of landward downlapping beds along a basin margin (lower Pliocene, Carboneras Basin, SE Spain). Sedimentology, 50: 553-563; https://doi.org/10.1046/j.1365-3091.2003.00564.x
  • 23. Braga, J.C., Martín, J.M., Quesada, C., 2003b. Patterns and average rates of late Neogene-Recent uplift of the Betic Cordiliera, SE Spain. Geomorphology, 50: 3-26; https://doi.org/10.1016/S0169-555X(02)00205-2
  • 24. Brenner, R.L., Martinsen, O.J., 1990. The fossil sandstone - a shallow marine sand wave complex in the Namurian of Cumbria and North Yorkshire, England. Proceedings of the Yorkshire Geological Society, 48: 149-162; https://doi.org/10.1144/pygs.48.2.149
  • 25. Bromley, R.G., Asgaard, U., 1975. Sediment structures produced by a spatangoid echinoid: a problem of preservation. Bulletin of the Geological Society of Denmark, 24: 261-281; https://doi.org/10.1016/S0016-7878(97)80026-0
  • 26. Bromley, R.G., Uchman, A., 2003. Trace fossils from the Lower and Middle Jurassic marginal marine deposits of the Sorthat Formation, Bornholm, Denmark. Bulletin of the Geological Society of Denmark, 52: 185-208.
  • 27. Bromley, R.G., Jensen, M., Asgaard, U., 1995. Spatangoid echinoids: deep-tier trace fossils and chemosymbiosis. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 195: 25-35; https://doi.org/10.1127/njgpa/195/1995/25
  • 28. Bromley, R.G., Asgaard, U., Jensen, M., 1997. Experimental study of sediment structures created by a spatangoid echinoid, Echinocardium mediterraneum. Proceedings of the Geologists' Association, 108: 183-189; https://doi.org/10.1016/S0016-7878(97)80026-0
  • 29. Buatois, L.A., Mángano, M.G., 2011. Ichnology: Organism-Substrate Inferactions in Space and Time. Cambridge University Press, Cambridge.
  • 30. Buatois, L.A., García-Ramos, J.C., Pinuela, L., Mángano, M.G., Rodríguez-Tovar, F.J., 2016. Rosselia socialis from the Ordovician of Asturias (northern Spain) and the early evolution of equilibrium behavior in polychaetes. Ichnos, 23: 147-155; https://doi.org/10.1080/10420940.2015.1132213
  • 31. Buchanan, J.B., 1966. The biology of Echinocardium cordatum [Echinodermata: Spatangoidea] from different habitats. Journal of the Marine Biological Association of the United Kingdom, 46: 97-114; https://doi.org/10.1017/S0025315400017574
  • 32. Buck, S.G., Goldring, R., 2003. Conical sedimentary structures, trace fossils or not? Observations, experiments, and review. Journal of Sedimentary Research, 73: 338-353; https://doi.org/10.1306/091602730338
  • 33. Caruso, C., Sonnino, M., Uchman, A., 2011. Trace fossils in the Pleistocene arenites outcropping nearby the village of Bombile (southern Ionian Calabria). Rendiconti Online SGI, 17: 59-61; https://doi.org/10.3301/ROL.2011.23
  • 34. Caruso, C., Monaco, P., 2015. Bichordites monastiriensis ichnofabric from the Pleistocene shallow-marine sandstones at Le Castelia (Crotone), Ionian Calabria, southern Italy. Rivista Italiana di Paleontologia e Stratigrafia, 121: 381-397.
  • 35. Cheng, C.H., Borsje, B.W., Beauchard, O., O'Flynn, S., Ysebaert, T., Soetaert, K., 2021. Small-scale macrobenthic community structure along asymmetrical sand waves in an underwater seascape. Marine Ecology, 42, e12657; https://doi.org/10.1111/maec.12657
  • 36. Chiarella, D., Moretti, M., Longhitano, S.G., Muto, F., 2016. Deformed cross-stratified deposits in the Early Pleistocene tidally-dominated Catanzaro strait-fill succession, Calabrian Arc (Southern Italy): triggering mechanisms and environmental significance. Sedimentary Geology, 344: 277-289; https://doi.org/10.1016/j.sedgeo.2016.05.003
  • 37. Clifton, H.E., Thompson, J.K., 1978. Macaronichnus segregatis: a feeding structure of shallow marine polychaetes. Journal of Sedimentary Research, 48: 1293-1302; https://doi.org/10.1306/212F7667-2B24-11D7-8648000102C1 865D
  • 38. Colella, A., D'Alessandro, A., 1988. Sand waves, Echinocardium traces and their bathyal depositional setting (Monte Torre Palaeostrait, Plio-Pleistocene, southern Italy). Sedimentology, 35: 219-237; https://doi.org/10.1111/j.1365-3091.1988.tb00946.x
  • 39. Collins, A.B., Heupel, M.R., Hueter, R.E., Motta, P.J., 2007. Hard prey specialists or opportunistic generalists? An examination of the diet of the cownose ray, Rhinoptera bonasus. Marine and Freshwater Research, 58: 135-144; https://doi.org/10.1071/MF05227
  • 40. Cross, R.E., Curran, M.C., 2004. Recovery of meiofauna in intertidal feeding pits created by rays. Southeastern Naturali st, 3: 219-230; https://doi.org/10.1656/1528-7092(2004)003[0219:ROMIIF]2.0 CO;2
  • 41. Dabrio, C.J., 1986-1987. Las “sand waves" calcareníticas del Río Alias (Mioplioceno de la Cuenca de Níjar, Almeria). Acta Geológica Hispánica, 21: 159-166.
  • 42. Dafoe, L.T., Gingras, M.K., Pemberton, S.G., 2008a. Determining Euzonus mucronata burrowi ng rates with application to ancient Macaronichnus segregatis tracemakers. Ichnos, 15: 78-90; https://doi.org/10.1080/10420940802016475
  • 43. Dafoe, L.T., Gingras, M.K., Pemberton, S.G., 2008b. Analysis of mineral segregation in Euzonus mucronata burrow structures: one possible method in the construction of ancient Macaronichnus segregatis. Ichnos, 15: 91-102; https://doi.org/10.1080/10420940802016582
  • 44. D'Alessandro, A., Massari, F., 1997. Pliocene and Pleistocene depositional environments in the Pesculuse area (Salento, Italy). Rivista Italiana di Paleontologia e Stratigrafia, 103: 221-258; https://doi.org/10.54103/2039-4942/13450_
  • 45. D'Alessandro, A., Massari, F., Davaud, E., Ghibaudo, G., 2004. Pliocene-Pleistocene sequences bounded by subaerial unconformities within foramol ramp calcarenites and mixed deposits (Salento, SE Italy). Sedimentary Geology, 166: 89-144; https://doi.org/10.1016/j.sedgeo.2003.11.017
  • 46. D'Alessandro, A., Uchman, A., 2007. Bichordites and Bichordites-Rosselia ichnoassemblages from the Lower Pleistocene Tursi Sandstone (southern Italy). SEPM Special Publications, 88: 213-221; https://doi.org/10.2110/pec.07.88.0213
  • 47. Damveld, J.H., van der Reijden, K.J., Cheng, C., Koop, L., Haaksma, L.R., Walsh, C.A., Soetaert, K., Borsje, B.W., Govers, L.L., Roos, P.C., Olff, H., 2018. Video transects reveal that tidal sand waves affect the spatial distribution of benthic organisms and sand ripples. Geophysical Research Letters, 45: 11 -837; https://doi.org/10.1029/2018GL079858
  • 48. Dashtgard, S.E., 2011. Linking invertebrate burrow distributions (neoichnology) to physicochemical stresses on a sandy tidal flat: implications for the rock record. Sedimentology, 58: 1303-1325; https://doi.org/10.1111 /j. 1365-3091.2010.01210.x
  • 49. Desai, B.G., Saklani, R.D., 2015. Palaeocommunity dynamics and behavioral analysis of Conichnus: Bhuj formation (Lower Cretaceous), Kachchh-India. Ichnos, 22: 43-55; https://doi.org/10.1080/10420940.2014.995377
  • 50. Dominici, S., Benvenuti, M., Garilli, V., Uchman, A., Pollina, F., 2017. Stratigraphic palaeobiology around the Pliocene-Pleistocene boundary at Altavilla Milicia (Sicily, Italy). In: EGU General Assembly Conference Abstracts, 11667.
  • 51. Duperron, M., Scasso, R.A., 2020. Petrographic analysis of crowded Rosselia ichnofabrics from the Tremadocian of Northwestern Argentina: ethologic meaning and diagenesis. Revista de la Asociación Geológica Argentina, 77: 335-352.
  • 52. Droser, M.L., Bottjer, D.J., 1993. Trends and patterns of Phanerozoic ichnofabrics. Annual Review of Earth and Planetary Sciences, 21: 205-225; https://doi.org/10.1146/annurev.ea.21.050193.001225
  • 53. Ekdale, A.A., 1985. Paleoecology of the marine endobenthos. Palaeogeography, Palaeoclimatology, Palaeoecology, 50: 63-81; https://doi.org/10.1016/S0031 -0182(85)80006-7
  • 54. Ekdale, A.A., 1988. Pitfalls of paleobathymetric interpretations based on trace fossil assemblages. Palaios, 3: 464-472; https://doi.org/10.2307/3514720
  • 55. Ekdale, A.A., Harding, S.C., 2015. Cylindrichnus concentricus Toots in Howard, 1966 (trace fossil) in its type locality, Upper Cretaceous, Wyoming. Annales Societatis Geologorum Poloniae, 85: 427-432; https://doi.org/10.14241/asgp.2015.018
  • 56. Ellis, J.R., Pawson, M.G., Shackley, S.E., 1996. The comparative feeding ecology of six species of shark and four species of ray (Elasmobranchii) in the north-east Atlantic. Journal of the Marine Biological Association of the United Kingdom, 76: 89-106.
  • 57. Fillion, D., Pickerill, R.K., 1990. Ichnology of the upper Cambrian? to lower Ordovician Bell Island and Wabana groups of eastern New- foundland, Canada. Palaeontographica Canadiana, 7: 1-119.
  • 58. Flowers, K.I., Heithaus, M.R., Papastamatiou, Y.P., 2021. Buried in the sand: Uncovering the ecological roles and importance of rays. Fish and Fisheries, 22: 105-127; https://doi.org/10.1111/faf.12508
  • 59. Fortuin, A.R., Dabrio, C.J., 2008. Evidence for Late Messinian seismites, Níjar Basin, south-east Spain. Sedimentology, 55: 1595-1622; https://doi.org/10.1111/j.1365-3091.2008.00959.x
  • 60. Frey, R.W., Howard, J.D., 1981. Conichnus and Schaubcylindrichnus: redefined trace fossils from the Upper Cretaceous of the Western Interior. Journal of Paleontology, 55: 800-804.
  • 61. Frieling, D., 2007. Rosselia socialis in the Upper Marine Molasse of southwestern Germany. Facies, 53: 479-492; https://doi.org/10.1007/s10347-007-0117-1
  • 62. Fu, S., Werner, F., 2000. Distribution, ecology and taphonomy of the organism trace, Scolicia, in northeast Atlantic deep-sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 156: 289-300; https://doi.org/10.1016/S0031-0182(99)00146-7
  • 63. Giannetti, A., Baeza-Carratalá, J.F., Soria-Mingorance, J.M., Dulai, A., Tent-Manclús, J.E., Peral-Lozano, J., 2018. New paleobiogeographical and paleoenvironmental insight through the Tortonian brachiopod and ichnofauna assemblages from the Mediterranean-Atlantic seaway (Guadix Basin, SE Spain). Facies, 64, 24; https://doi.org/10.1007/s10347-018-0536-1
  • 64. Giannetti, A., Monaco, P., Falces-Delgado, S., La Iacona, F.G., Corbí, H., 2019. Taphonomy, ichnology, and palaeoecology to distinguish event beds in varied shallow-water settings (Betic Cordillera, SE Spain). Journal of Iberian Geology, 45: 47-61; https://doi.org/10.1007/s41513-018-0094-y
  • 65. Gibert, J.M.de, Da Silva, C.M., Cachao, M., 1998. Icnofábrica de Ophiomorpha/ Conichnus en el Mioceno inferior de Cristo de Rei (Almada, Portugal). Implicaciones paleoambientales. Revista Espanola de Paleontologia, 13: 251-259.
  • 66. Gibert, J.M.de, Ekdale, A.A., 2002. Ichnology of a restricted epicontinental sea, Arapien Shale, Middle Jurassic, Utah, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 183: 275-286; https://doi.org/10.1016/S0031-0182(01)00491-6
  • 67. Gibert, J.M.de, Goldring, R., 2007. An ichnofabric approach to the depositional interpretation of the intensely burrowed Bateig Limestone, Miocene, SE Spain. Sedimentary Geology, 194: 1-16; https://doi.org/10.1016Zj.sedgeo.2006.04.008
  • 68. Gibert, J.M.de, Goldring, R., 2008. Spatangoid-produced ichnofabrics (Bateig Limestone, Miocene, Spain) and the preservation of spatangoid trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 270: 299-310; https://doi.org/10.1016/j.palaeo.2008.01.031
  • 69. Gingras, M.K., Pemberton, S.G., Saunders, T., Clifton, H.E., 1999. The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington; variability in estuarine settings. Palaios, 14: 352-374; https://doi.org/10.2307/3515462
  • 70. Gingras, M.K., MacMillan, B., Balcom, B.J., Saunders, T., Pemberton, S.G., 2002. Using magnetic resonance imaging and petrographic techniques to understand the text ural at tributes and porosity distribution in Macaronichnus-bur rowed sandstone. Journal of Sedimentary Research, 72: 552-558; https://doi.org/10.1306/122901720552
  • 71. Gingras, M.K., Armitage, I.A., Pemberton, S.G., Clifton, H.E., 2007. Pleistocene walrus herds in the Olympic Peninsula area: trace-fossil evidence of predation by hydraulic jetting. Palaios, 22: 539-545; https://doi.org/10.2110/palo.2005.p05-120r
  • 72. Gingras, M.K., Dashtgard, S.E., MacEachern, J.A., Pemberton, S.G., 2008. Biology of shallow marine ichnology: a modern perspective. Aquatic Biology, 2: 255-268; https://doi.org/10.3354/ab00055
  • 73. Gingras, M.K., MacEachern, J.A., Dashtgard, S.E., 2011. Process ichnology and the elucidation of physico-chemical stress. Sedimentary Geology, 237: 115-134; https://doi.org/10.1016/j.sedgeo.2011.02.006
  • 74. Goldring, R., 1995. Organisms and the substrate: response and effect. Geological Society Special Publications, 83: 151-180; https://doi.org/10.1144/GSL.SP.1995.083.01.09
  • 75. Goldring, R., 1996. The sedimentological significance of concentrically laminated burrows from Lower Cretaceous Ca-bentonites, Oxfordshire. Journal of the Geological Society, 153: 255-263; https://doi.org/10.1144/gsjgs.153.2.0255
  • 76. Goldring, R., Codée, G.C., Pollard, J.E., 2007. Climatic control of marine trace fossil distribution. In: Trace Fossils: Concepts, Problems, Prospects (ed. W. Miller, III): 159-171. Elsevier. London; https://doi.org/10.1016/B978-044452949-7/50136-4
  • 77. Goy, J.L., Zazo, C., 1986. Synthesis of the Quaternary in the Almeria littoral neotectonic activity and its morphologic features, western Betics, Spain. Tectonophysics, 130: 259-270; https://doi.org/10.1016/0040-1951(86)90116-2
  • 78. Gregory, M.R., Ballance, P.F., Gibson, G.W., Ayling, A.M., 1979. On how some rays (Elasmobranchia) excavate feeding depressions by jetting water. Journal of Sedimentary Research, 49: 1125-1129; https://doi.org/10.1306/212F78C9-2B24-11D7-8648000102C1865D
  • 79. Gregory, M.R., 1991. New trace fossils from the Miocene of Northland, New Zealand: Rorschachichnus amoeba and Piscichnus waitemata. Ichnos, 1: 195-205; https://doi.org/10.1080/10420949109386352
  • 80. Grun, T.B., 2016. Echinoid test damage by a stingray predator. Lethaia, 49: 285-286; https://doi.org/10.1111/let.12165
  • 81. Heithaus, M.R., Frid, A., Vaudo, J.J., Worm, B., Wirsing, A.J., 2010. Unraveling the ecological importance of elasmobranchs. In: Sharks and their relatives II, CRC Press: 627-654; https://doi.org/10.1201/9781420080483
  • 82. Hofmann, R., Mángano, M.G., Elicki, O., Shinaq, R., 2012. Paleoecologic and biostratigraphic significance of trace fossils from shallow-to marginal-marine environments from the Middle Cambrian (Stage 5) of Jordan. Journal of Paleontology, 86: 931-955; https://doi.org/10.1666/11-129R1.1
  • 83. Jordan, G.F., 1962. Large submarine sand waves: their orientation and form are influenced by some of the same factors that shape desert sand dunes. Science, 136: 839-848.
  • 84. Kappus, E.J., Lucas, S.G., 2019. Ichnologic note a new ichnospecies of Cardioichnus from the Cretaceous (Albian) of New Mexico. Ichnos, 26: 127-133; https://doi.org/10.1080/10420940.2018.1482215
  • 85. Keighley, D.G., Pickerill, R.K., 1995. Commentary: The ichnotaxa Palaeophycus and Planolites: Historical perspectives and recommendations. Ichnos, 3: 301-309; https://doi.org/10.1080/10420949509386400
  • 86. Klug, C., Hoffmann, R., 2018. Early Devonian actiniarian trace fossils (Conichnus conicus) from the Anti-Atlas of Morocco. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 290: 65-74.
  • 87. Knaust, D., 2017. Atlas of Trace Fossils in Well Core. Appearance, Taxonomy and Interpretation. Springer, Cham; https://doi.org/10.1007/978-3-319-49837-9
  • 88. Knaust, D., 2021. Rosselichnidae ifam. nov.: burrows with concentric, spiral or eccentric lamination. Papers in Palaeontology, 7: 1847-1875; https://doi.org/10.1002/spp2.1367
  • 89. Kotake, N., 2007. Macaronichnus isp. associated with Piscichnus waitemata in the Miocene of Yonaguni-jima Island, Southwest Japan. In: Trace Fossils Concepts, Problems, Prospects (ed. W.M Miller, III): 492-501. Elsevier, Amsterdam; https://doi.org/10.1016/B978-044452949-7/50156-X
  • 90. Last, P.R., White, W.T., de Carvalho, M.R., Séret, B., Stehmann, M.F.W., Naylor, G.J.P., 2016. Rays of the World. Melbourne: CSIRO Publishing & Cornell University Press; https://doi.org/10.1080/17451000.2017.1336246
  • 91. Liou, Y.H., Löwemark, L., Wang, P.L., Dashtgard, S., 2022. Geochemical signatures of sedimentary and diagenetic processes in the trace fossil Rosselia from the Pliocene in Taiwan. Scientific Reports, 12, 22316; https://doi.org/10.1038/s41598-022-26772-0
  • 92. Lohrer, A.M., Thrush, S.F., Gibbs, M.M., 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature, 431: 1092-1095; https://doi.org/10.1038/nature03042
  • 93. Lohrer, A.M., Thrush, S.F., Hunt, L., Hancock, N., Lundquist, C., 2005. Rapid reworking of subtidal sediments by burrowing spatangoid urchins. Journal of Experimental Marine Biology and Ecology, 321: 155-169; https://doi.org/10.1016/jjembe.2005.02.002
  • 94. Longhitano, S.G., Rossi, V.M., Chiarella, D., Mellere, D., Tropeano, M., Dalrymple, R.W., Steel, R.J., Nappi, A., Olita, F., 2021. Anatomy of a mixed bioclastic-siliciclastic regressive tidal sand ridge: Facies-based case study from the lower Pleistocene Siderno Strait, southern Italy. Sedimentology, 68: 2293-2333; https://doi.org/10.1111 /sed. 12853
  • 95. Löwemark, L., 2015. Evidence for targeted elasmobranch predation on thalassinidean shrimp in the Miocene Taliao Formation, NE Taiwan. Lethaia, 48: 227-234; https://doi.org/10.1111/let.12101
  • 96. MacEachern, J.A., Bann, K.L., 2020. The Phycosiphon Ichnofacies and the Rosselia Ichnofacies: Two new ichnofacies for marine deltaic environments. Journal of Sedimentary Research, 90: 855-886; https://doi.org/10.2110/jsr.2020.41
  • 97. Mángano, M.G., Buatois, L.A., Acenolaza, G.F., 1996. Trace fossils and sedimentary facies from a Late Cambrian-Early Ordovician tide-dominated shelf (Santa Rosita Formation, northwest Argentina): implications for ichnofacies models of shallow marine successions. Ichnos, 5: 53-88;l https://doi.org/10.1080/10420949609386406
  • 98. Marchetti, L., Belvedere, M., Voigt, S., Klein, H., Castanera, D., Díaz-Martínez, I., Marty, D., Xing, L., Feola, S., Melchor, R.N., Farlow, J.O., 2019. Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present. Earth-Science Reviews, 193: 109-145; https://doi.org/10.1016/j.earscirev.2019.04.008
  • 99. Marenco, K.N., Hagadorn, J.W., 2019. Big bedding planes: outcrop size and spatial heterogeneity influence trace fossil analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 513: 14-24; https://doi.org/10.1016/j.palaeo.2018.08.008
  • 100. Martín J.M., Braga J.C., 1996. Tectonic signals in the Messinian stratigraphy of the Sorbas basin (Almeria, SE Spain). In: Tertiary basins of Spain: the stratigraphic record of crustal kinematics. World and Regional Geology Series (eds. P.F. Friend and C.J. Dabrio), 6: 387-391. Cambridge University Press, Cambridge.
  • 101. Martín, J.M., Braga, J.C., Betzler, C., 2003. Late Neogene-recent uplift of the Cabo de Gata volcanic province, Almeria, SE Spain. Geomorphology, 50: 27-42; https://doi.org/10.1016/S0169-555X(02)00206-4
  • 102. Martín, J.M., Braga, J.C., Aguirre, J., Betzler, C., 2004. Contrasting models of temperate carbonate sedimentation in a small Mediterranean embayment: The Pliocene Carboneras Basin, SE Spain. Journal of the Geological Society 161: 387-399; https://doi.org/10.1144/0016-764903-044
  • 103. Mata, S.A., Corsetti, C.L., Corsetti, F.A., Awramik, S.M., Bottjer, D.J., 2012. Lower Cambrian anemone burrows from the upper member of the Wood Canyon Formation, Death Valley region, United States: palaeoecological and palaeoenvironmental significance. Palaios, 27: 594-606; https://doi.org/10.2110/palo.2012.p12-016r
  • 104. Mayoral E., Muniz, F., 2001. New Ichnospecies of Cardioichnus from the Miocene of the Guadalquivir Basin, Huelva, Spain, Ichnos, 8: 69-76; https://doi.org/10.1080/10420940109380174
  • 105. McIIroy, D., 2007. Lateral variability in shallow marine ichnofabrics: implications for the ichnofabric analysis method. Journal of the Geological Society, 164: 359-369; https://doi.org/10.1144/0016-76492005-101
  • 106. Michael, S.W., 1993. Reef sharks and rays of the world: a guide to their identification, behavior, and ecology, Annapolis, MD. ProStar Publications; https://doi.org/10.1017/s0025315400034998
  • 107. Miguez-Salas, O., Rodríguez-Tovar, F.J., de Weger, W., 2021. The Late Miocene Rifian corridor as a natural laboratory to explore a case of ichnofacies distribution in ancient gateways. Scientific Reports, 11,4198; https://doi.org/10.1038/s41598-021-83820-x
  • 108. Nara, M., 1995. Rosselia socialis: a dwelling structure of a probable terebellid polychaete. Lethaia, 28: 171-178; https://doi.org/10.1111/j.1502-3931.1995.tb01610.x
  • 109. Nara, M., 1997. High-resolution analytical method for event sedimentation using Rosselia socialis. Palaios, 12: 489-494; https://doi.org/10.2307/3515386
  • 110. Nara, M., 2002. Crowded Rosselia socialis in Pleistocene inner shelf deposits: benthic paleoecology during rapid sea-level rise. Palaios, 17: 268-276; https://doi.org/10.1669/0883-1351(2002)017<0268:CRSIPI>2.0.CO;2
  • 111. Nara, M., 2014. The Bichordites ichnofabric in the Pleistocene ocean current-generated sand ridge complex. Spanish Journal of Palaeontology, 29: 191-202; https://doi.org/10.7203/sjp.29.2.17801
  • 112. Nara, M., Haga, M., 2007. The youngest record of trace fossil Rosselia socialis: occurrence in the Holocene shallow marine deposits of Japan. Paleontological Research, 11: 21-27; https://doi.org/10.2517/1342-8144(2007)11[21:TYROTF]2.0.C O;2
  • 113. Nara, M., Seike, K., 2004. Macaronichnus segregatis-like traces found in the modern foreshore sediments of the Kujukurihama Coast, Japan (in Japanese with English abstract). Journal of the Geological Society of Japan, 110: 545-551; https://doi.org/10.5575/geosoc.110.545
  • 114. Nara, M., Seike, K., 2019. Palaeoecology of Macaronichnus segregatis degiberti: Reconstructing the infaunal lives of the travisiid polychaetes. Palaeogeography, Palaeoclimatology, Palaeoecology, 516: 284-294; https://doi.org/10.1016/j.palaeo.2018.12.011
  • 115. Nara, M., Seno'o, M., Yamaoka, Y., 2020. Scolicia shirahamensis isp. nov.: a triple-corded scolicia and its ichnological implications. Ichnos, 27: 300-306; https://doi.org/10.1080/10420940.2020.1744580
  • 116. Nauta, J., Leurs, G., Nieuwenhuis, B.O., Mathijssen, D.R., Olff, H., Bouma, T.J., van der Wal, D., Hijner, N., Regalla, A., Pontes, S.L., Govers, L.L., 2024. Bioturbation by benthic stingrays alters the biogeomorphology of tidal flats. Ecosystems, 27: 493-507; https://doi.org/10.1007/s10021-024-00901-4
  • 117. Netto, R.G., Tognoli, F.M., Assine, M.L., Nara, M., 2014. Crowded Rosselia ichnofabric in the Early Devonian of Brazil: an example of strategic behavior. Palaeogeography, Palaeoclimatology, Palaeoecology, 395: 107-113; https://doi.org/10.1016/j.palaeo.2013.12.032
  • 118. Nielsen, J.K., Nara, M., Jacobsen, A.R., 2020. Bowl-shaped structures in a Pleistocene clastic carbonate wedge on the Island of Rhodes, Greece. Ichnos, 27: 326-333; https://doi.org/10.1080/10420940.2020.1744582
  • 119. Nielsen, L.H., Johannessen, P.N., 2008. Are some isolated shelf sandstone ridges in the Cretaceous Western Interior Seaway transgressed, de-ached spit systems? SEPM Special Publication, 90: 333-354; https://doi.org/10.2110/pec.08.90.0333
  • 120. Olariu, C., Steel, R.J., Dalrymple, R.W., Gingras, M.K., 2012. Tidal dunes versus tidal bars: the sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sedimentary Geology, 279: 134-155; https://doi.org/10.1016/j.sedgeo.2012.07.018
  • 121. Olivero, E.B., López Cabrera, M.I., 2005. Patagonichnus: a new trace fossil from the Miocene of Patagonia. A probable fodinichnion of gregarious polychaetes. Ameghiniana, 42: 277-294.
  • 122. Olivero, E.B., López Cabrera, M.I., Ercolano, B., Pittaluga, S., Lizarralde, Z., 2012. Caught in fraganti: actual and Holocene, crowded Rosselia-like mud-lined tubes produced by spionid polychates. Ameghiniana, 49 (4), Suplemento - Resúmenes: R152; https://doi.org/10.5710/AMGH.v49i4.5
  • 123. Olivero, E.B., López Cabrera, M.I., 2020. A new shallow-marine, high-latitude record of the trace fossil Macaronichnus in Miocene, reworked delta-front clinoforms, Punta Basilica, Tierra Del Fuego, Argentina. Ichnos, 27: 369-383; https://doi.org/10.1080/10420940.2020.1755854
  • 124. Osgood, R.G.Jr., 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana, 6: 276-439.
  • 125. O'Shea, O.R., Thums, M., Van Keulen, M., Meekan, M., 2011. Bioturbation by stingrays at Ningaloo reef, Western Australia. Marine and Freshwater Research, 63: 189-197; https://doi.org/10.1071/MF11180
  • 126. Patel, S.J., Shitole, A.D.. Joseph, J.K., 2018. Plug Shaped Burrows Conichnus-Conostichus from the Late Cretaceous of Bagh Group, Gujarat, Western India. Journal of the Geological Society of India, 91: 41-46; https://doi.org/10.1007/s12594-018-0818-9
  • 127. Pearson, N.J., Gingras, M.K., Armitage, I.A., Pemberton, S.G., 2007. Significance of Atlantic sturgeon feeding excavations, Mary's Point, Bay of Fundy, New Brunswick, Canada. Palaios, 22: 457-464; https://doi.org/10.2110/palo.2005.p05-121r
  • 128. Pearson, N.J., Mángano, M.G., Buatois, L.A., Casadío, S., Raising, M.R., 2013. Environmental variability of Macaronichnus ichnofabrics in Eocene tidal-embayment deposits of southern Patagonia, Argentina. Lethaia, 46: 341-354; https://doi.org/10.1111/let.12012
  • 129. Pemberton, S.G., Frey, R.W., 1982. Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. Journal of Paleontology, 56: 843-881.
  • 130. Pemberton, S.G., MacEachern, J.A., Dashtgard, S.E., Bann, K.L., Gingras, M.K., Zonneveld, J.-P., 2012. Shoreface, Developments in Sedimentology, 64: 563-603.
  • 131. Pervesler, P., Uchman, A., 2004. Ichnofossils from the type area of the Grund Format ion (Miocene, Lower Badenian) in northern Lower Austria (Molasse Basin). Geologica Carpathica, 55: 103-110.
  • 132. Plaziat, J.C., Mahmoudi, M., 1988. Trace fossils attributed to burrowing echinoids: A revision including new ichnogenus and ichnospecies. Geobios, 21: 209-233; https://doi.org/10.1016/S0016-6995(88)80019-6
  • 133. Pollard, J.E., Goldring, R., Buck, S.G., 1993. Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation. Journal of the Geological Society, 150: 149-164; https://doi.org/10.1144/gsjgs.150.1.0149
  • 134. Postma, G. 1979. Preliminary note on a significant sequence in conglomeratic flows of a mass-transport dominated fan-delta (lower Pliocene, Almeria Basin, SE Spain). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Serie B, 82: 465-471.
  • 135. Postma, G. 1983. Water-escape structures in the context of a depositional model of a mass flow dominated conglomeratic fan-delta (Abrioja Formation, Pliocene, Almeria Basin, SE Spain). Sedimentology, 30: 91-103; https://doi.org/10.1111/j.1365-3091.1983.tb00652.x
  • 136. Pryor, W.A., Amaral, E.J., 1971. Large-scale cross-stratification in the St. Peter Sandstone. GSA Bull etin, 82: 239-244; https://doi.org/10.1130/0016-7606(1971)82[239:LCITSP]2.0.C0;
  • 137. Quiroz, L.I., Buatois, L.A., Mángano, M.G., Jaramillo, C.A., Santiago, N., 2010. Is the trace fossil Macaronichnus segregatis an indicator of temperate to cold waters? Exploring the paradox of its occurrence in tropical coasts. Geology, 38: 651-654; https://doi.org/10.1130/G30140.1
  • 138. Quiroz, L.I., Buatois, L.A., Seike, K., Mángano, M.G., Jaramillo, C., Sellers, A.J., 2019. The search for an elusive worm in the tropics, the past as a key to the present, and reverse uniformitarianism. Scientific Reports, 9, 18402; https://doi.org/10.1130/G30140.1
  • 139. Rastgoo, A.R., Navarro, J., Valinassab, T., 2018. Comparative diets of sympatric batoid elasmobranchs in the Gulf of Oman. Aquatic Biology, 27: 35-41; https://doi.org/10.3354/ab00694
  • 140. Rice, D.D., Shurr, G.W., 1983. Patterns of sedimentation and paleography across the Western Interior Seaway during time of deposition of Upper Cretaceous sandstones and equivalent rocks. In: Mesozoic Paleogeography of the West-Central United States (eds. M.W. Reynolds and E.D. Dolly): 337-358. The Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists, Denver.
  • 141. Rindsberg, A.K., Gastaldo, R.A., 1990. New insight on ichnogenus Rosselia (Cretaceous and Holocene, Alabama). Journal of the Alabama Academy of Science, 61, 154.
  • 142. Rodríguez-Tovar, F.J., Aguirre, J., 2014. Is Macaronichnus an exclusively small, horizontal and unbranched structure? Macaronichnus segregatis degiberti isubsp. nov. Spanish Journal of Palaeontology, 29: 131-142; https://doi.org/10.7203/sjp.29.2.17682
  • 143. Rodríguez-Tovar, F.J., García-García, F., 2023. Macaronichnus 'co-occurrence' in offshore transition settings: discussing the role of tidal versus fluid muds influence. Geobios, 80: 73-82; https://doi.org/10.1016Zj.geobios.2023.07.001
  • 144. Saitoh, M., Kanazawa, K.I., 2012. Adaptative morphology for living in shallow water environments in spatangoid echinoids. Zoosymposia, 7: 255-265; https://doi.org/10.11646/zoosymposia.7.1.24
  • 145. Salé, S.O., Gennari, R., Lugli, S., Manzi, V., Roveri, M., 2012. Tectonic and climatic control on the Late Messinian sedimentary evolution of the Nijar Basin (Betic Cordillera, Southern Spain). Basin Research, 24: 314-337; https://doi.org/10.1111/j.1365-2117.2011.00527.x
  • 146. Savrda, C., 2002. Equilibrium responses reflected in a large Conichnus (Upper Cretaceous Eutawformation, Alabama, USA). Ichnos, 9: 33-40; https://doi.org/10.1080/10420940190034058
  • 147. Schäfer, W., 1956. Wirkungen der Benthos-Organismen auf den jungen Schichtverband. Senckenbergiana Lethaea, 37: 183-263.
  • 148. Schäfer, W., 1972. Ecology and Palaeoecology of Marine Environments. Oliver & Boyd, Edinburgh.
  • 149. Schlirf, M., Uchman, A., 2005. Revision of the ichnogenus Sabellarifex Richter, 1921 and its relationship to Skolithos Haldeman, 1840 and Polykladichnus Fürsich, 1981. Journal of Systematic Palaeontology, 3: 115-131; https://doi.org/10.1017/S1477201905001550
  • 150. Seike, K., Yanagishima, S.I., Nara, M., Sasaki, T., 2011. Large Macaronichnus in modern shoreface sediments: Identification of the producer, the mode of formation, and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 311: 224-229; https://doi.org/10.1016/j.palaeo.2011.08.023
  • 151. Shillito, A.P., Gougeon, R., 2023. Identifying and accounting for outcrop constraints on observations in field-based ichnological studies. Ichnos, 30: 269-282; https://doi.org/10.1080/10420940.2024.2330417
  • 152. Shinn, E.A., 1968. Burrowing in recent lime sediments of Florida and the Bahamas. Journal of Paleontology, 42: 879-894.
  • 153. Slatt, R.M., 1984. Continental shelf topography: key to understanding distribution of shelf sand-ridge deposits from Cretaceous Western Interior Seaway. AAPG Bulletin, 68: 1107-1120; https://doi.org/10.1306/AD4616DD-16F7-11D7-8645000102C1 865D
  • 154. Smith, A.B., Crimes, T.P., 1983. Trace fossils formed by heart urchins - a study of Scolicia and related traces. Lethaia, 16: 79-92; https://doi.org/10.1111/j.1502-3931.1983.tb02001 .x
  • 155. Sola, F., Puga-Bernabéu, Á., Aguirre, J., Braga, J.C., 2017. Heterozoan carbonate deposition on a steep basement escarpment (Late Miocene, Almeria, south-east Spain). Sedimentology, 64: 1107-1131; https://doi.org/10.1111/sed.12343
  • 156. Sola, F., Puga-Bernabéu, Á., Braga, J.C., 2024. Tidally influenced deposits in the Rio Alias Strait connecting a marginal basin with the Mediterranean Sea (Pliocene, South-East Spain). The Depositional Record, 00: 1-30; https://doi.org/10.1002/dep2.303
  • 157. Sommerville, E., Platell, M.E., White, W.T., Jones, A.A., Potter, I.C., 2011. Partitioning of food resources by four abundant, co-occurring elasmobranch species: relationships between diet and both body size and season. Marine and Freshwater Research, 62: 54-65; https://doi.org/10.1016/S0022-0981(01)00257-X
  • 158. Suganuma, K., Omori, M., Hirakoso, S., Ryuugasaki Collaborative Research Group, 1994. On the Ichnogen. Rosselia, fossil burrows found from the Kamiiwahashi Formation, in the district of Tokizaki, Edosaki-machi, Ryuugasaki City, Ibaraki Prefecture (in Japanese with English summary). Journal of Fossil Research, 26: 61-68.
  • 159. Thrush, S.F., Pridmore, R.D., Hewitt, J.E., Cummings, V.J., 1991. Impact of ray feeding disturbances on sandflat macrobenthos: Do communities dominated by polychaetes or shellfish respond differently? Marine Ecology Progress Series, 69: 245-252.
  • 160. Thayer, C.W., 1979. Biological bulldozers and the evolution of marine benthic communities. Science, 203: 458-461; https://doi.org/10.1126/science.203.4379.45
  • 161. Taylor, A.M., Goldring, R., 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150: 141-148; https://doi.org/10.1144/gsjgs.150.1.014
  • 162. Taylor, A., Goldring, R., Gowland, S., 2003. Analysis and application of ichnofabrics. Earth-Science Reviews, 60: 227-259; https://doi.org/10.1016/S0012-8252(02)00105-8
  • 163. Uchman, A., 1995. Taxonomy and palaeoecology of flysch trace fossils: the Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria, 15: 1-115.
  • 164. Uchman, A., Krenmayr, H.G., 1995. Trace fossils from lower Miocene (Ottnangian) molasse deposits of Upper Austria. Paläontologische Zeitschrift, 69: 503-524; https://doi.org/10.1007/BF02987810
  • 165. Uchman, A., Torres, P., Johnson, M.E., Berning, B., Ramalho, R.S., Rebelo, A.C., Melo, C.S., Baptista, L., Madeira, P., Cordeiro, R., Avila, S.P., 2018. Feeding traces of recent ray fish and occurrences of the trace fossil Piscichnus waitemata from the Pliocene of Santa Maria Island, Azores (Northeast Atlantic). Palaios, 33: 361-375; https://doi.org/10.2110/palo.2018.027
  • 166. Uchman, A., Johnson, M.E., Ramalho, R.S., Quartau, R., Berning, B., Hipólito, A., Melo, C.S., Rebelo, A.C., Cordeiro, R., Ávila, S.P., 2020. Neogene marine sediments and biota encapsulated between lava flows on Santa Maria Island (Azores, north-east Atlantic): an interplay between sedimentary, erosional and volcanic processes. Sedimentology, 67: 3595-3618; https://doi.org/10.1111 /sed.12763
  • 167. VanBlaricom, G.R., 1982. Experimental analyses of structural regulation in a marine sand community exposed to oceanic swell. Ecological Monographs, 52: 283-305; https://doi.org/10.2307/2937332
  • 168. Villegas-Martín, J., Netto, R.G., 2017. Bichordites from the early Eocene of Cuba: significance in the evolutionary history of the spatangoids. Journal of South American Earth Sciences, 80: 404-410; https://doi.org/10.1016/j.jsames.2017.10.008
  • 169. Wetzel, A., 1981. Ökologische und stratigraphische Bedeutung biogener Gefüge in quartären Sedimenten am NW-afrikanischen Kontinentalrand. “Meteor” Forschungs-Ergebnisse, C 34: 1-47.
  • 170. Wetzel, A., Unverricht, D., 2020. Sediment dynamics of estuarine Holocene incised-valley fill deposits recorded by Siphonichnus (ancient Red River, Gulf of Tonkin). Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 110041; https://10.1016/j.palaeo. 2020.110041
  • 171. Zlatanović, S., Fabian, J., Mendoza-Lera, C., Woodward, K.B., Premke, K., Mutz, M., 2017. Periodic sediment shift in migrating ripples influences benthic microbial activity. Water Resources Research, 53: 4741-4755; https://doi.org/10.1002/2017WR020656
  • 172. Zonneveld, J.-P., Gingras, M.K., 2013. The ichnotaxonomy of vertically oriented, bivalve-generated equilibrichnia. Journal of Paleontology, 87: 243-253; https://doi.org/10.1666/11-064R1.1
  • 173. Zorn, M.E., Muehlenbachs, K., Gingras, M.G., Konhauser, K.O., Pemberton, S.G., Evoy, R. 2007. Stable isotopic analysis reveals evidence for groundwater-sediment-animal interactions in a marginal-marine setting. Palaios, 22: 546-553; https://doi.org/10.2110/palo.2006.p06-023r
  • 174. Zorn, M.E., Gingras, M.K., Pemberton, S.G., 2010. Variation in burrow-wall micromorphologies of select intertidal invertebrates along the Pacific northwest coast, USA: behavioral and diagenetic implications. Palaios, 25: 59-72; https://doi.org/10.2110/palo.2009.p09-026r
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dada3a05-0c53-4296-a8c2-4bb93a7a4b8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.