PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Perzyna viscoplastic model in dynamic behaviour of magnetorheological fluid under high strain rates

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The extension of viscoplastic model of Perzyna for the field of magnetorheological materials is proposed. Perzyna’s approach is adopted to identify the mechanisms of microscopic rearrangement of ferroelements producing visible increase of material stiffness, in particular increase of shear modulus. The project of laboratory test stand is presented. It is based on Split-Hopkinson pressure bar set-up equipped with container for magnetorheological fluid and coil to control it.
Rocznik
Strony
233--243
Opis fizyczny
Bibliogr., 23 poz., rys., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
Bibliografia
  • 1. Klepaczko J.R., Introduction to experimental techniques for materials testing at high strain rates, Institute of Aviation, Warsaw, 2007.
  • 2. Milecki A., Electro and magnetorheological fluids and their technical application [in Polish: Ciecze elektro- i magnetoreologiczne oraz ich zastosowania w technice], Wydawnictwo Politechniki Poznańskiej, edition 2, Poznań, 2010.
  • 3. Nowacki W.K., Stress waves in non-elastic solids, Oxford, New York, Pergamon Press, 1978.
  • 4. Perzyna P., Theory of viscoplasticity [in Polish: Teoria lepkoplastyczności], PWN, Warszawa, 1966.
  • 5. Kenner V.H., The Fluid Hopkinson Bar, Experimental Mechanics, 20, 7, 226–232, 1980.
  • 6. Perzyna P., The constitutive equations for rate sensitive plastic materials, Quarterly of Applied Mathematics, 20, 4, 321–332, 1963.
  • 7. Bajkowski J., Skalski P., Analysis of viscoplastic properties of a magnetorheological fluid in a damper, Acta Mechanica, 6, 3, 5–10, 2012.
  • 8. Wang X., Gorganinejad F., Study of magnetorheological fluids at high shear rates, Rheologica Acta, 45, 899–908, 2006.
  • 9. Jolly M.R., Carlson J.D., Munoz B.C., A model of the behavior of magnetorheological materials, Smart Materials and Structures, 5, 607–614, 1996.
  • 10. Skalski P., Zalewski R., Viscoplastic properties of an magnetorheological fluid in a damper, Journal of Theoretical and Applied Mechanics, 52, 1061–1070, 2014.
  • 11. Yang Y., Li L., Chen G., Static yield stress of ferrofluid based magnetorheological fluids, Rheologica Acta, 48, 457–466, 2009.
  • 12. Russel W.B., Grant M.C., Distinguishing between dynamic yielding and wall slip in a weakly flocculated colloidal dispersion, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 161, 271–282, 2000.
  • 13. Xu Y., Gong XD., Xuan S., Soft magnetorheological polymer gels with controllable rheological properties, Smart Materials and Structures, 22, 2013.
  • 14. Bossis G., Lacis S., Meunier A., Vokova O., Magnetorheological fluids, Journal of Magnetism and Magnetic Materials, 252, 224–228, 2002.
  • 15. Holnicki-Szulc J., Graczykowski C., Mikułowski G., Mróz A., Pawłowski P.K., Smart technologies for adaptive impact absorption, Solid State Phenomena (ISSN: 1012- 0394), 154, 187–194, 2009.
  • 16. Jarząbek D., Precise and direct method for the measurement of the torsion spring constant of the atomic force microscopy cantilevers, Review of Scientific Instruments (ISSN: 0034-6748), 86, 013701-1-013701-6, 2015.
  • 17. Quoc-Hung N., Seung-Bok C., Optimal design methodology of magnetorheological fluid based mechanisms, Smart Actuation and Sensing Systems – Recent Advances and Future Challenges, 953–978, 2012.
  • 18. Lim A.S., Lopatnikov S.L., Gillespie J.W. Jr., Implementing the Split Hopkinson pressure bar technique for viscous fluid evaluation, Proceedings of XIth International Congress and Exposition, Society for Experimental Mechanics Inc., June 2–5, 2008 Orlando, Florida USA, 2008.
  • 19. Lim A.S., Lopatnikov S.L., Gillespie J.W. Jr., Wagner N.J., Phenomenological modeling of the response of a dense colloidal suspension under dynamic squeezing flow, Journal of Non-Newtonian Fluid Mechanics, 166, 680–688, 2011.
  • 20. Kenner V.H., The fluid Hopkinson bar, [in:] SESA Spring Meeting in San Francisco, 226–232, 1979.
  • 21. Bingham E.C., An investigation of the laws of plastic flow, U.S. Bureau of Standards Bulletin, 13, 309–353, 1916.
  • 22. Hopkinson B., A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets, Philos. Trans. R. Soc. (London) A, 213, 437–456, 1914.
  • 23. Kolsky H., An investigation of the mechanical properties of materials at very high rates of loading, Proc. Phys. Soc. London, B62, 676, 1949.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dad36aaf-f769-4d9d-bb9d-610d63cc83b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.