Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
GaSe(CS(NH2) 2(C14H10) clathrate with a hierarchical subhosthhosthguestii type architecture was formed under illumination and its electrically conductive properties were studied. The method of impedance spectroscopy studied the frequency behavior of the real and imaginary parts of the complex total impedance in the range of 10 -3-10 6 Hz. The measurements were performed under normal conditions, in a permanent magnetic field (220 kA/m), or under light illumination (for a standard solar spectrum AM 1.5 G total available power is 982 W/m 2). The structure of the impurity energy spectrum at the Fermi level was investigated by the method of thermostimulated discharge in the temperature range from 240 to 340 K. Using Jebol-Pollack theoretical approaches based on impedance spectra, the parameters of the impurity energy spectrum were calculated, such as the density of states at the Fermi level, the jump radius , the scatter of trap levels near the Fermi level and the real density of deep traps. As evidenced by studies, illumination during clathrate synthesis, forms an internal electret polarization, which leads to abnormal behavior of the photoresistive effect and to the appearance of the memristive effect. The imposition of a permanent magnetic field during the measurement of complex resistance leads to the appearance of quantum capacitance.
Rocznik
Tom
Strony
art. no. e143104
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Częstochowa, Poland
- Lviv Polytechnic National University, Bandera Str. 12, Lviv, 79013, Ukraine
autor
- Lviv Polytechnic National University, Bandera Str. 12, Lviv, 79013, Ukraine
autor
- Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Częstochowa, Poland
autor
- Lviv Polytechnic National University, Bandera Str. 12, Lviv, 79013, Ukraine
autor
- Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Częstochowa, Poland
autor
- Lviv Polytechnic National University, Bandera Str. 12, Lviv, 79013, Ukraine
Bibliografia
- [1] V. Ramamurthy and B. Mondal, “Supramolecular photochemistry concepts highlighted with select examples,” J. Photochem. Photobiol. C: Photochem Rev., vol. 23, pp. 68–102, 2015, doi: 10.1016/j.jphotochemrev.2015.04.002.
- [2] D.B. Amabilino, D.K. Smith, and J.W. Steed, “Supramolecular materials,” Chem. Soc. Rev., vol. 46, pp. 2404–2420, 2017, doi: 10.1039/C7CS00163K.
- [3] P. Hashim, J. Bergueiro, E. Meijer, and T. Aida, “Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials,” Prog. Polym. Sci., vol. 105, p. 101250, 2020, doi: 10.1016/j.progpolymsci.2020.101250.
- [4] T. Yu, Z.X. Shen, W.S. Toh, J.M. Xue, and J. Wang, “Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles,” J. Appl. Phys., vol. 94, no. 1, pp. 618–620, 2003, doi: 10.1063/1.1583146.
- [5] M.B. Smith et al., “Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3”, J. Am. Chem. Soc., vol. 130, no. 22, pp. 6955–6963, 2008, doi: 10.1021/ja0758436.
- [6] M.B. Dung and N.H. Thuong, “Phase transition and dielectric relaxation of a mixed ferroelectric composite from cellulose nanoparticles and triglycine sulfate,” Ferroelectrics, vol. 550, no 1, pp. 141–150, 2019, doi: 10.1080/00150193.2019.1652504.
- [7] M. Urdampilleta et al., “Supramolecular spin valves,” Nat. Mater., vol. 10, pp. 502–506, 2011, doi: 10.1038/nmat3050.
- [8] T. Nasobe et al., “Organization of supramolecular assemblies of fullerene, porphyrin and fluorescein dye derivation on TiO2 nanoparticles for light energy conversion,” Chem. Phys., vol. 319, pp. 243-252, 2005, doi: 10.1016/j.chemphys.2005.06.035.
- [9] J. Roncali et al., “Molecular and supramolecular engineering of p-conjugated systems for photovoltaic conversion,” Thin Solid Films, vol. 511–512, pp. 567–575, 2006, doi: 10.1016/j.tsf.2005.12.014.
- [10] V. Maksymych, D. Całus, F. Ivashchyshyn, A. Pidluzhna, P. Chabecki, and R. Shvets, “Quantum energy accumulation in semiconductorh ionic liquidi layered clathrates,” Appl. Nanosci., vol. 12, pp. 1147–1153, 2022, doi: 10.1007/s13204-021-01763-1.
- [11] I.I. Grygorchak, F.O. Ivashchyshyn, A.K. Borysiuk, R.Ya. Shvets, and Yu.O. Kulyk, “Clathrate semiconductor multiferroics, synthesized in system GaSe–NaNO2–F´lSO4 and influence of cointercalation,” Radio Electron. Comput. Sci. Control., vol. 3, pp. 7–19, 2017, doi: 10.15588/1607-3274-2017-3-1.
- [12] J.-H. Choy, “Intercalative route to heterostructured nanohybrid,” J. Phys. Chem. Solids, vol. 65, no. 2–3, pp. 373–383, 2004, doi: 10.1016/j.jpcs.2003.10.047.
- [13] G. Choi, S. Eom, A. Vinu, and J.-H. Choy, “2D Nanostructured Metal Hydroxides with Gene Delivery and Theranostic Functions,” Compr. Rev, Chem. Rec., vol. 18, no. 7–8, pp. 1033–1053, 2018, doi: 10.1002/tcr.201700091.
- [14] F.O. Ivashchyshyn, O.V. Balaban, and I.I. Grygorchak, “Peculiarities of properties of the GaSe(InSe)<CS(NH2)2> nanohybrids, synthesized under lighting,” J. Nano- Electron. Phys., vol. 8, no. 4, p. 04015(1–6), 2016, doi: 10.21272/jnep.8(4(1)).04015.
- [15] J. Jasi´nski, M. Kozakiewicz, and M. Sołtysik, “The Effectiveness of Energy Cooperatives Operating on the Capacity Market,” Energies, vol. 14, p. 3226, 2021, doi: 10.3390/en14113226.
- [16] Y. Mysak, O. Pona, S. Shapoval, M. Kuznetsova, and T. Kovalenko, “Evaluation of energy efficiency of solar roofing using mathematical and experimental research,” East.-Eur. J. Enterpr. Technol., vol. 3, pp. 26–32, 2017, doi: 10.15587/1729-4061.2017.103853.
- [17] J. Inarrea, “Microscopic theory for radiation-induced zero-resistance states in 2D electron systems: Frank-Condon blockads,” Appl. Phys. Lett., vol. 110, p. 143105, 2017, doi: 10.1063/1.4979830.
- [18] D.A. Bandurin et. Al., “High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe,” Nat. Nanotechnol. Lett., vol. 12, no. 3, pp. 223–227, 2016, doi: 10.1038/NNANO.2016.242.
- [19] I. Mora-Sero and J. Bisquert, “Implications of the Negative Capacitance Observed at Forwars Bias in Nanocomposite and Polycrystalline Solar Cells,” Nano Lett., vol. 6, no. 4, pp. 640 – 650, 2006, doi: 10.1021/nl052295q.
- [20] N.T. Hung, A.R.T. Nugraha, and R. Saito, “Two-dimensional InSe as a potential thermoelectric materials,” Appl. Phys. Letters, vol. 111, no. 9, p. 092107, 2017, doi: 10.1063/1.5001184.
- [21] A. K. Geim and I.V. Grigorieva, “Van der Waals Heterostructures,” Nature, vol. 499, p. 419, 2013, doi: 10.1038/nature12385.
- [22] F. Huang, Z. Li, and H. Jiang, “Analysis and control of thiourea content in ammonium containing zinc plating bath,” Cailiao Baohu vol. 30, pp. 23–25, 1997.
- [23] D. Mullen and E. Hellner, “A Simple Refinement of Density Distributions of Bonding Electrons. IX. Bond Electron Density Distribution in Thiourea, CS(NH2)2, at 123K,” Acta Crystallogr, vol. 9, pp. 2789–2794, 1978, doi: 10.1107/S0567740878009243.
- [24] K. Takemoto, N. Sonoda, Inclusion Compounds of Urea, Thiourea and Seleneurea, Inclusion Compounds, IJ.L. Atwood, J.E.D. Davies, and D.D. MacNicol (Eds.), vol. 2, pp. 47–67, 1984.
- [25] T. Pluta and A.J. Sadlej, “Electric properties of urea and thiourea,” J. Chem. Phys., vol. 114, no. 1, pp. 136–146, 2001, doi: 10.1063/1.1328398.
- [26] C. Puzzarini, “Molecular Structure of Thiourea,” J. Phys. Chem. A, vol. 116, pp. 4381–4387, 2012, doi: 10.1021/jp301493b.
- [27] S. Kausar, A.A. Altaf, M. Hamayun, A. Badshah, and A. Razzaq, “Supramolecular Chemistry and DNA Interaction Studies of Ferrocenyl Ureas and Thioureas,” in Photophysics, Photochemical and Substitution Reactions – Recent Advances. London, United Kingdom: IntechOpen, 2020, doi: 10.5772/intechopen.84412.
- [28] X. Shang, Z. Yang, J. Fu, P. Zhao, and X. Xu, “The Synthesis and Anion Recognition Property of Symmetrical Chemosensors Involving Thiourea Groups: Theory and Experiments,” Sensors, vol. 15, no, 11, pp. 28166–28176, 2015, doi: 10.3390/s151128166.
- [29] A.J. Goshe, I.M. Steele, C. Ceccarelli, A.L. Rheingold, and B. Bosnich, “Supramolecular recognition: On the kinetic lability of thermodynamically stable host–guest association complexes,” Proceedings of the National Academy of Sciences, 2022, vol. 99, no. 8, pp. 4823–4829, doi: 10.1073/pnas.052587499.
- [30] I. Grygorchak, F. Ivashchyshyn, P. Stakhira, R.R. Reghu, V. Cherpak, and J.V. Grazulevicius, “Intercalated Nanostructure Consisting of Inorganic Receptor and Organic Ambipolar Semiconductor,” J. Nanoelectron. Optoelectron., vol. 8, pp. 292–296, 2013, doi: 10.1166/jno.2013.1464.
- [31] R. Andreichin, “High-field polarization, photopolarization and photoelectret properties of high-resistance amorphous semiconductors,” J.Electrostat., vol. 1, pp. 217–230, 1975, doi: 10.1016/0304-3886(75)90018-2.
- [32] J.F. Fowler, “X-Ray induced conductivity in insulating materials,” Proc. R. Soc. Lond. A., vol. 236, pp. 464–480, 1956, doi: 10.1098/ rspa.1956.0149.
- [33] B. Lukiyanets and D. Matulka, “Quantum Capacitance of Nanoplates in Magnetic Field,” Int. J. Nanosci., vol. 15, p. 1650009, 2016, doi: 10.1142/s0219581x16500095.
- [34] V. Parkash and A.K. Goel, “Quantum Capacitance Extraction for Carbon Nanotube Interconnects,” Nanoscale Res. Lett., vol. 5, no. 9, pp. 1424–1430, 2010, doi: 10.1007/s11671-010-9656-4.
- [35] M. Pollak and T.H. Geballe, “Low-Frequency Conductivity Due to Hopping Processes in Silicon,” Phys. Rev., vol. 6, p. 1743, 1961, doi: org/10.1103/physrev.122.1742.
- [36] G.U. Kamble et al., “Coexistence of filamentary and homogeneous resistive switching with memristive and meminductive memory effects in Al/MnO2/SS thin film metal–insulator–metal device,” Int. Nano Lett., 2018, doi: 10.1007/s40089-018-0249-z.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-daca923a-6009-43b1-a52a-c30b96567e0e