PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nephropathy forecasting in diabetic patients using a GA-based type-2 fuzzy regression model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Choosing a proper method to predict and timely prevent the complications of diabetes could be considered a significant step toward optimally controlling the disease. Since in medical research only small sample sizes of data are available and medical data always includes high levels of uncertainty and ambiguity, a type-2 fuzzy regression model seems to be an appropriate procedure for finding the relationship between outcome and explanatory variables in medical decision-making. In this paper, a new type-2 fuzzy regression model based on type-2 fuzzy time series concepts is used to forecast nephropathy in diabetic patients. Results in two examples show model efficiency. The use of such models in diabetes clinics is proposed.
Twórcy
  • Department of Electrical Engineering, Science And Research Branch, Islamic Azad University, Tehran, Iran
  • Department of Electrical Engineering, Science And Research Branch, Islamic Azad University, Tehran, Iran
  • Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
autor
  • Department of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
Bibliografia
  • [1] Study PD, Americans A, Americans N, Asso- AD. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 2005;28:176–88.
  • [2] Grubb A. Non-invasive estimation of glomerular filtration rate (GFR). The Lund model: simultaneous use of cystatin C-and creatinine-based GFR-prediction equations, clinical data and an internal quality check. Scand J Clin Lab Invest 2010;70:65–70. http://dx.doi.org/10.3109/00365511003642535.
  • [3] Pourahmad S, S.M.T. ayatollahi SMT. Fuzzy logistic regression: a new possibilistic model and its applivation in clinical vague status. Iran J Fuzzy Syst 2011;8:1–17.
  • [4] Stavros Lekkas LM. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases. Artif Intell Med 2010;50:117–26.
  • [5] Cosenza B. Off-line control of the postprandial glycemia in type 1 diabetes patients by a fuzzy logic decision support. Expert Syst Appl 2012;39:10693–9. http://dx.doi.org/10.1016/j.eswa.2012.02.198.
  • [6] Lee C-S, Wang M-H. A fuzzy expert system for diabetes decision support application. IEEE Trans Syst Man Cybern Part B 2011;41:139–53. http://dx.doi.org/10.1109/TSMCB.2010.2048899.
  • [7] Doostparast Torshizi A, Fazel Zarandi MH. Alpha-plane based automatic general type-2 fuzzy clustering based on simulated annealing meta-heuristic algorithm for analyzing gene expression data. Comput Biol Med 2014;64:347–59. http://dx.doi.org/10.1016/j.compbiomed.2014.06.017.
  • [8] Dazzi D, Taddei F, Gavarini A, Uggeri E, Negro R, Pezzarossa A. The control of blood glucose in the critical diabetic patient: a neuro-fuzzy method. J Diabetes Compl 2001;15:80–7. http://dx.doi.org/10.1016/S1056-8727(00)00137-9.
  • [9] Mahmoodian H, Ebrahimian L. Using support vector regression in gene selection and fuzzy rule generation for relapse time prediction of breast cancer. Biocybern Biomed Eng 2016;1–7. http://dx.doi.org/10.1016/j.bbe.2016.03.003.
  • [10] Paramasivam V, Yee TS, Dhillon SK, Sidhu AS. A methodological review of data mining techniques in predictive medicine: an application in hemodynamic prediction for abdominal aortic aneurysm disease. Biocybern Biomed Eng 2014; 34:139–45. http://dx.doi.org/10.1016/j.bbe.2014.03.003.
  • [11] Mansoof A Bin, Khan Z, Khan A, Khan SA. Enhancement of exudates for the diagnosis of diabetic retinopathy. IEEE Int Multitopic Conference. 2008. pp. 128–31. http://dx.doi.org/10.1109/INMIC.2008.4777722.
  • [12] Narasimhan B, Malathi A. Fuzzy logic system for risk-level classification of diabetic nephropathy. Green Comput. Commun. Electr. Eng. (ICGCCEE), 2014 Int. Conference. 2014. pp. 1–4.
  • [13] RD E, Nagaveni N. Design methodology of a fuzzy knowledgebase system to predict the risk of diabetic nephropathy. Int J Comput Sci 2010;7:239–47.
  • [14] Bolotin A. Fuzzification of linear regression models with indicator variables in medical decision making. IEEE Int Conf Comput Intell Model Control Autom; 2005.
  • [15] Poleshchuk O, Komarov E. A fuzzy linear regression model for interval type-2 fuzzy sets. Annu Meet North Am Fuzzy Inf Process Soc. 2012. pp. 1–5. http://dx.doi.org/10.1109/NAFIPS.2012.6290970.
  • [16] Hosseinzadeh E, Hassanpour H, Arefi M. A weighted goal programming approach to fuzzy linear regression with crisp inputs and type-2 fuzzy outputs. Soft Comput 2014;19:1143–51. http://dx.doi.org/10.1007/s00500-014-1328-3.
  • [17] Watada J. Fuzzy time series analysis and forecasting of sales volume. Fuzzy Regres. Anal.. Pmnitec Press; 1992. p. 211–27.
  • [18] Song Q, Chissom BS. Fuzzy time series and its models. Fuzzy Sets Syst 1993;54:269–77.
  • [19] Chen S. Forecasting enrollments based on fuzzy time series. Fuzzy Sets Syst 1996;81:311–9.
  • [20] Cai Q, Zhang D, Zheng W, Leung SCH. A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression. Knowledge-Based Syst 2015;74:61–8. http://dx.doi.org/10.1016/j.knosys.2014.11.003.
  • [21] Askari S, Montazerin N. A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering. Expert Syst Appl 2015;42:2121–35. http://dx.doi.org/10.1016/j.eswa.2014.09.036.
  • [22] Bas E, Uslu VR, Yolcu U, Egrioglu E. A modified genetic algorithm for forecasting fuzzy time series. Appl Intell 2014;41:453–63. http://dx.doi.org/10.1007/s10489-014-0529-x.
  • [23] Sadaei HJ, Enayatifar R, Abdullah AH, Gani A. Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. Int J Electr Power Energy Syst 2014;62:118–29. http://dx.doi.org/10.1016/j.ijepes.2014.04.026.
  • [24] Tsaur R, Kuo T. Tourism demand forecasting using a novel high-precision fuzzy time series model. Int J Innov Comput Inf Control 2014;10:695–701.
  • [25] Egrioglu E. PSO-based high order time invariant fuzzy time series method: application to stock exchange data. Econ Model 2014;38:633–9.
  • [26] Sun B, Guo H, Reza Karimi H, Ge Y, Xiong S. Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series. Neurocomputing 2015;151:1528–36. http://dx.doi.org/10.1016/j.neucom.2014.09.018.
  • [27] Li S, Cheng Y. Deterministic fuzzy time series model for forecasting enrollments. Comput Math with Appl 2007;53:1904–20. http://dx.doi.org/10.1016/j.camwa.2006.03.036.
  • 28] Huarng K, Yu H. A Type 2 fuzzy time series model for stock index forecasting. Physica A 2005;353:445–62. http://dx.doi.org/10.1016/j.physa.2004.11.070.
  • [29] Bajestani NS, Zare A. Forecasting TAIEX using improved type 2 fuzzy time series. Expert Syst Appl 2011;38:5816–21. http://dx.doi.org/10.1016/j.eswa.2010.10.049.
  • [30] Bajestani NS. Application of optimized type 2 fuzzy time series for forecasting Taiwan Stock Index n.d.
  • [31] Aliev RA, Fazlollahi B, Vahidov R. Genetic algorithms-based fuzzy regression analysis. Soft Comput A Fusion Found Methodol Appl 2002;6:470–5. http://dx.doi.org/10.1007/s00500-002-0163-0.
  • [32] Ling SSH, Nguyen HT. Genetic-algorithm-based multiple regression with fuzzy inference system for detection of nocturnal hypoglycemic episodes. IEEE Trans Inf Technol Biomed 2011;15:308–15. http://dx.doi.org/10.1109/TITB.2010.2103953.
  • 33] Aladag CH, Yolcu U, Egrioglu E, Bas E. Fuzzy lagged variable selection in fuzzy time series with genetic algorithms. Appl Soft Comput J 2014;22:465–73. http://dx.doi.org/10.1016/j.asoc.2014.03.028.
  • [34] Hojati M, Bector CR, Smimou K. A simple method for computation of fuzzy linear regression. Eur J Oper Res 2005;166:172–84. http://dx.doi.org/10.1016/j.ejor.2004.01.039.
  • [35] Narges Shafaei Bajestani, Ali Vahidian Kamyad AZ. An interval type-2 fuzzy regression model with crisp inputs and type-2 fuzzy outputs for TAIEX forecasting. IEEE Int Conf Inf Autom China; 2016.
  • [36] Michalewicz Z. Genetic algorithms+data structures=evolution programs. New York: Springer-Verlag; 1996.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dac9baa4-e872-48da-ad34-6dee1dd95b66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.