Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Choosing a proper method to predict and timely prevent the complications of diabetes could be considered a significant step toward optimally controlling the disease. Since in medical research only small sample sizes of data are available and medical data always includes high levels of uncertainty and ambiguity, a type-2 fuzzy regression model seems to be an appropriate procedure for finding the relationship between outcome and explanatory variables in medical decision-making. In this paper, a new type-2 fuzzy regression model based on type-2 fuzzy time series concepts is used to forecast nephropathy in diabetic patients. Results in two examples show model efficiency. The use of such models in diabetes clinics is proposed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
281--289
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electrical Engineering, Science And Research Branch, Islamic Azad University, Tehran, Iran
autor
- Department of Electrical Engineering, Science And Research Branch, Islamic Azad University, Tehran, Iran
autor
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
autor
- Department of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
Bibliografia
- [1] Study PD, Americans A, Americans N, Asso- AD. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 2005;28:176–88.
- [2] Grubb A. Non-invasive estimation of glomerular filtration rate (GFR). The Lund model: simultaneous use of cystatin C-and creatinine-based GFR-prediction equations, clinical data and an internal quality check. Scand J Clin Lab Invest 2010;70:65–70. http://dx.doi.org/10.3109/00365511003642535.
- [3] Pourahmad S, S.M.T. ayatollahi SMT. Fuzzy logistic regression: a new possibilistic model and its applivation in clinical vague status. Iran J Fuzzy Syst 2011;8:1–17.
- [4] Stavros Lekkas LM. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases. Artif Intell Med 2010;50:117–26.
- [5] Cosenza B. Off-line control of the postprandial glycemia in type 1 diabetes patients by a fuzzy logic decision support. Expert Syst Appl 2012;39:10693–9. http://dx.doi.org/10.1016/j.eswa.2012.02.198.
- [6] Lee C-S, Wang M-H. A fuzzy expert system for diabetes decision support application. IEEE Trans Syst Man Cybern Part B 2011;41:139–53. http://dx.doi.org/10.1109/TSMCB.2010.2048899.
- [7] Doostparast Torshizi A, Fazel Zarandi MH. Alpha-plane based automatic general type-2 fuzzy clustering based on simulated annealing meta-heuristic algorithm for analyzing gene expression data. Comput Biol Med 2014;64:347–59. http://dx.doi.org/10.1016/j.compbiomed.2014.06.017.
- [8] Dazzi D, Taddei F, Gavarini A, Uggeri E, Negro R, Pezzarossa A. The control of blood glucose in the critical diabetic patient: a neuro-fuzzy method. J Diabetes Compl 2001;15:80–7. http://dx.doi.org/10.1016/S1056-8727(00)00137-9.
- [9] Mahmoodian H, Ebrahimian L. Using support vector regression in gene selection and fuzzy rule generation for relapse time prediction of breast cancer. Biocybern Biomed Eng 2016;1–7. http://dx.doi.org/10.1016/j.bbe.2016.03.003.
- [10] Paramasivam V, Yee TS, Dhillon SK, Sidhu AS. A methodological review of data mining techniques in predictive medicine: an application in hemodynamic prediction for abdominal aortic aneurysm disease. Biocybern Biomed Eng 2014; 34:139–45. http://dx.doi.org/10.1016/j.bbe.2014.03.003.
- [11] Mansoof A Bin, Khan Z, Khan A, Khan SA. Enhancement of exudates for the diagnosis of diabetic retinopathy. IEEE Int Multitopic Conference. 2008. pp. 128–31. http://dx.doi.org/10.1109/INMIC.2008.4777722.
- [12] Narasimhan B, Malathi A. Fuzzy logic system for risk-level classification of diabetic nephropathy. Green Comput. Commun. Electr. Eng. (ICGCCEE), 2014 Int. Conference. 2014. pp. 1–4.
- [13] RD E, Nagaveni N. Design methodology of a fuzzy knowledgebase system to predict the risk of diabetic nephropathy. Int J Comput Sci 2010;7:239–47.
- [14] Bolotin A. Fuzzification of linear regression models with indicator variables in medical decision making. IEEE Int Conf Comput Intell Model Control Autom; 2005.
- [15] Poleshchuk O, Komarov E. A fuzzy linear regression model for interval type-2 fuzzy sets. Annu Meet North Am Fuzzy Inf Process Soc. 2012. pp. 1–5. http://dx.doi.org/10.1109/NAFIPS.2012.6290970.
- [16] Hosseinzadeh E, Hassanpour H, Arefi M. A weighted goal programming approach to fuzzy linear regression with crisp inputs and type-2 fuzzy outputs. Soft Comput 2014;19:1143–51. http://dx.doi.org/10.1007/s00500-014-1328-3.
- [17] Watada J. Fuzzy time series analysis and forecasting of sales volume. Fuzzy Regres. Anal.. Pmnitec Press; 1992. p. 211–27.
- [18] Song Q, Chissom BS. Fuzzy time series and its models. Fuzzy Sets Syst 1993;54:269–77.
- [19] Chen S. Forecasting enrollments based on fuzzy time series. Fuzzy Sets Syst 1996;81:311–9.
- [20] Cai Q, Zhang D, Zheng W, Leung SCH. A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression. Knowledge-Based Syst 2015;74:61–8. http://dx.doi.org/10.1016/j.knosys.2014.11.003.
- [21] Askari S, Montazerin N. A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering. Expert Syst Appl 2015;42:2121–35. http://dx.doi.org/10.1016/j.eswa.2014.09.036.
- [22] Bas E, Uslu VR, Yolcu U, Egrioglu E. A modified genetic algorithm for forecasting fuzzy time series. Appl Intell 2014;41:453–63. http://dx.doi.org/10.1007/s10489-014-0529-x.
- [23] Sadaei HJ, Enayatifar R, Abdullah AH, Gani A. Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. Int J Electr Power Energy Syst 2014;62:118–29. http://dx.doi.org/10.1016/j.ijepes.2014.04.026.
- [24] Tsaur R, Kuo T. Tourism demand forecasting using a novel high-precision fuzzy time series model. Int J Innov Comput Inf Control 2014;10:695–701.
- [25] Egrioglu E. PSO-based high order time invariant fuzzy time series method: application to stock exchange data. Econ Model 2014;38:633–9.
- [26] Sun B, Guo H, Reza Karimi H, Ge Y, Xiong S. Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series. Neurocomputing 2015;151:1528–36. http://dx.doi.org/10.1016/j.neucom.2014.09.018.
- [27] Li S, Cheng Y. Deterministic fuzzy time series model for forecasting enrollments. Comput Math with Appl 2007;53:1904–20. http://dx.doi.org/10.1016/j.camwa.2006.03.036.
- 28] Huarng K, Yu H. A Type 2 fuzzy time series model for stock index forecasting. Physica A 2005;353:445–62. http://dx.doi.org/10.1016/j.physa.2004.11.070.
- [29] Bajestani NS, Zare A. Forecasting TAIEX using improved type 2 fuzzy time series. Expert Syst Appl 2011;38:5816–21. http://dx.doi.org/10.1016/j.eswa.2010.10.049.
- [30] Bajestani NS. Application of optimized type 2 fuzzy time series for forecasting Taiwan Stock Index n.d.
- [31] Aliev RA, Fazlollahi B, Vahidov R. Genetic algorithms-based fuzzy regression analysis. Soft Comput A Fusion Found Methodol Appl 2002;6:470–5. http://dx.doi.org/10.1007/s00500-002-0163-0.
- [32] Ling SSH, Nguyen HT. Genetic-algorithm-based multiple regression with fuzzy inference system for detection of nocturnal hypoglycemic episodes. IEEE Trans Inf Technol Biomed 2011;15:308–15. http://dx.doi.org/10.1109/TITB.2010.2103953.
- 33] Aladag CH, Yolcu U, Egrioglu E, Bas E. Fuzzy lagged variable selection in fuzzy time series with genetic algorithms. Appl Soft Comput J 2014;22:465–73. http://dx.doi.org/10.1016/j.asoc.2014.03.028.
- [34] Hojati M, Bector CR, Smimou K. A simple method for computation of fuzzy linear regression. Eur J Oper Res 2005;166:172–84. http://dx.doi.org/10.1016/j.ejor.2004.01.039.
- [35] Narges Shafaei Bajestani, Ali Vahidian Kamyad AZ. An interval type-2 fuzzy regression model with crisp inputs and type-2 fuzzy outputs for TAIEX forecasting. IEEE Int Conf Inf Autom China; 2016.
- [36] Michalewicz Z. Genetic algorithms+data structures=evolution programs. New York: Springer-Verlag; 1996.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dac9baa4-e872-48da-ad34-6dee1dd95b66