PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ruch pęcherzyka w cieczach i fizykochemiczna metoda detekcji zanieczyszczeń powierzchniowo-aktywnych w wodzie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Bubble motion in liquids and physocochemcal method of detection of surface-active pollutants in water
Języki publikacji
PL
Abstrakty
EN
Motion of gas bubbles in aqueous phase (either clean water or solutions of surface-active substances) is a phenomenon of great practical importance. Gas/liquid contacting is one of the most common operations in the chemical and petrochemical industry and mineral processing In particular in mineral industry, for all kind of flotation processes it is the main act responsible for the success of the entire technology As a result, properties of the liquid/gas interfaces are considered as a one of the most important parameters, determining the outcome of industrial applications and engineering processes. These properties can be modified by surfactants which adsorption (molecules accumulation) at the interfaces leads to the decrease in the interfacial tension and modification of the hydrodynamic boundary conditions. Description of a single bubble motion in wide range of flow magnitude (Reynolds numbers) is not trivial and many attempts have been undertaken to quantify a bubble behavior in liquids. This paper presents a short overview of the current “state of arts” on physics of the bubble motion in liquids and the elaborated models, describing motion of the bubble formed in liquid phase. The comparison of the theoretical models predictions with the available experimental data is presented. It is shown, moreover, that the bubble velocity can be used as a very sensitive tool for detection of organic contaminations in environmental water samples.
Rocznik
Strony
1317--1342
Opis fizyczny
Bibliogr. 77 poz., rys., tab., wykr.
Twórcy
autor
  • Instytut Katalizy i Fizykochemii Powierzchni im. Jerzego Habera Polskiej Akademii Nauk, ul. Niezapominajek 8, 30-239 Kraków
  • Instytut Katalizy i Fizykochemii Powierzchni im. Jerzego Habera Polskiej Akademii Nauk, ul. Niezapominajek 8, 30-239 Kraków
  • Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
  • Instytut Katalizy i Fizykochemii Powierzchni im. Jerzego Habera Polskiej Akademii Nauk, ul. Niezapominajek 8, 30-239 Kraków
Bibliografia
  • [1] A.A. Kulkarni, J.B. Joshi, Ind. Eng. Chem. Res., 2005, 44, 5873.
  • [2] A.V. Nguyen, H.J. Schulze, Colloidal Science of Flotation, Marcel Dekker, Inc., New York, 2004.
  • [3] J. Leja, Surface Chemistry of Froth Flotation, Plenum Press, New York and London, 1982.
  • [4] D.W. Fuerstenau, T.W. Healy, Adsorptive bubble separation techniques, Academic Press New York and London, 1972.
  • [5] J.S. Laskowski, Frothing in Flotation, Gordon and Breach Publishers, 1998.
  • [6] H.J. Schulze, G. Gotschalk, Developments in Mineral Processing, Proc. 13th Intern. Miner. Process. Congr., Warsaw, 1979.
  • [7] H.J. Schulze, G. Gotschalk, Aufbereitungstechnik, 1981, 22, 154.
  • [8] H. Bergelt, H. Stechemesser, Intern. J. Miner. Process., 1992, 34, 321.
  • [9] Z. Dai, Fornasiero, J. Ralston, J. Coll. Interface Sci., 1999, 217, 70.
  • [10] A.V. Nguyen, H.J. Schulze, H. Stechemesser, G. Zobel, Intern. J. Miner. Process., 1997, 150, 113.
  • [11] H. Stechemesser, A.V. Nguyen, Colloids Surf. A:, 1998, 142, 257.
  • [12] H.J. Schulze, K.W. Stockelhuber, A. Wenger, Colloids Surf. A: 2001, 192, 61.
  • [13] G. Gu, Z. Xu, K. Nadakumar, J. Masliyah, Intern. J. Miner. Process., 2003, 69, 235.
  • [14] R.-H. Yoon, Intern. J. Miner. Process., 2000, 58, 129.
  • [15] W. Wang, Z. Zhou, K. Nandakumar, Z. Xu, Z. J.H. Masliyah, Intern. J. Miner. Process., 2003, 68, 47.
  • [16] K. Malysa, M. Krasowska, M. Krzan, Adv. Coll. Interface Sci., 2005, 114-115, 205.
  • [17] N. Ishida, T. Inoue, M. Miyahara, K. Higashitani, K, Langmuir, 2000, 16, 6377.
  • [18] P. Attard, Adv. Coll. Interface Sci., 2003, 104, 75.
  • [19] A.V. Nguyen, J. Nalaskowski, J.D. Miller, H.-J. Butt, Intern. J. Miner. Proc., 2003, 72, 215.
  • [20] R. Steitz, T. Gutberlet, T. Hauss, B. Klösgen, R. Krastev, S. Schemmel, A.C. Simonsen, G.H. Findenegg, G. H. Langmuir, 2003, 19, 2409.
  • [21] J. Yang, J. Duan, D. Fornasiero, J. Ralston, J. Phys. Chem. B., 2003, 107, 6139.
  • [22] X. Zhang, N. Maeda, V.S.J. Craig, Langmuir, 2006, 22, 5025.
  • [23] M. Krasowska, R. Krastev, M. Rogalski, K. Malysa, Langmuir, 2007, 23, 549.
  • [24] M. Krasowska, K. Malysa, Intern. J. Mineral Process, 2007, 81, 205.
  • [25] J. Zawala, M. Krasowska, T. Dabros, K. Malysa, Can. J. Chem. Eng., 2007, 85, 669.
  • [26] V.G. Levich, Physicochemical Hydrodymanics, Prentice-Hall, Englewood Clifts, 1962.
  • [27] S.S. Dukhin, R. Miller, G. Logio, Drop and Bubbles Interfacial Research, Elsevier, New York, 1998.
  • [28] A.N. Frumkin, V.G. Levich, Zh. Phys. Chim., 1947, 21, 1183.
  • [29] S.S. Dukhin, G. Kretzschmar, R. Miller, Dynamics of adsorption at liquid interfaces. Theory, Experiments, Application”, Elsevier, 1995.
  • [30] B. Burczyk, Zielona chemia – zarys, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2006.
  • [31] K. Malysa, Adv. Colloid Interface Sci., 1992, 40, 37.
  • [32] Y.S. Cho, J.S. Laskowski, Can. J. Chem. Eng., 2002, 80, 299.
  • [33] Y.S. Cho, J.S. Laskowski, Int. J. Miner. Process., 2002, 64, 69.
  • [34] R.A. Grau, R.A., J.S. Laskowski, K. Heiskanen, Int. J. Miner. Process. 2005, 76, 225.
  • [35] T. Tate, Philos. Mag. 1864, 27, 176.
  • [36] J.S. Hadamard, CR Hebd. Seances Acad. Sci. Paris 1911, 152, 1735.
  • [37] W. Rybczynski, Bull Acad. Sci. Cracovie A., 1911, 1, 40.
  • [38] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978.
  • [39] S.S. Dukhin, G. Krezstchmar, R. Miller, Dynamics of Adsorption at Liquid Interfaces: Theory, Experiment, Application, Elsevier, Amsterdam, 1995.
  • [40] K. Małysa, M. Krasowska, M. Krzan, Adv. Coll. Interf. Sci., 2005, 114-115, 205.
  • [41] D. Kosior, J. Zawała, Phys. Chem. Chem. Phys., 2018, 20, 2403.
  • [42] S.S. Dukhin, V.I. Kovalchuk, G.G. Gochev, M. Lotfi, M. Krzan, K. Malysa, R. Miller, Adv. Colloid Interface Sci., 2015, 222, 260.
  • [43] M. Krzan, J. Zawala, K. Malysa, Colloids Surf. A: 2007, 298, 42.
  • [44] A. Navarra, C. Acuna, J.A. Finch, Int. J. Miner. Process. 2009, 91, 68.
  • [45] A.A. Rafiei, M. Robbertze, J.A. Finch, Int. J. Miner. Process. 2011, 98, 89.
  • [46] Y.H. Tan, A.A. Rafiei, A. Elmahdy, J.A. Finch, Int. J. Miner. Process. 2013, 119, 1-5.
  • [47] Y. Zhang, J.B. McLaughlin, J.A. Finch, Chem. Eng. Sci. 2001, 56, 6605.
  • [48] V. Ulaganathan, G. Gochev, C. Gehin-Delval, M.E. Leser, D.Z. Gunes, R. Miller, Colloids Surf. A., 2016, 505, 165.
  • [49] P. Pawliszak P.V. Ulaganathan, B.H. Bradshaw-Hajek, R. Manica, D.A. Beattie, M. Krasowska, J. Phys. Chem. C., 2019, 123, 15131.
  • [50] M. Krzan, K. Malysa, Colloids Surf. A, 2002, 207, 279.
  • [51] Y.H. Tan, J.A. Finch, Miner. Eng., 2016, 92, 1.
  • [52] Y.H. Tan, J.A. Finch, Miner. Eng., 2016, 95, 14.
  • [53] P.B. Kowalczuk, J. Zawała, J. Drzymała, Minerals, 2017, 7, 118.
  • [54] D.W. Moore, J. Fluid Mech. 1963, 16, 161.
  • [55] D.W. Moore, D.W., J. Fluid Mech., 1965, 23, 749.
  • [56] M. Rastello, J.L. Marie,M. Lance, J. Fluid Mech. 2011, 683, 434.
  • [57] R. Manica, E. Klaseboer, D.Y.C. Chan, Soft Matter, 2013, 12, 3271.
  • [58] J. Masliyah, R. Jauhari, M. Gray, Chem. Eng. Sci., 1994, 49, 1905.
  • [59] D.G. Karamanev, AIChE J. 1994, 40, 1418.
  • [60] D.G. Karamanev, D.G., Chem. Eng. Commun., 1996, 147, 75.
  • [61] D. Rodrigue, Can. J. Chem. Eng. 2001, 79, 119.
  • [62] D. Rodrigue, AIChE J. 2001, 47, 39.
  • [63] M.E. Abou-El-Hassan, Chem. Eng. Commun., 1983, 22, 243.
  • [64] P.C. Duineveld, J. Fluid Mech., 1995, 292, 325.
  • [65] D. Legendre, R. Zenit and J. R. Velez-Cordero, Phys. Fluids, 2012, 24, 043303.
  • [66] A.V. Nguyen, H. Stechemesser, G. Zobel, H.J. Schulze, Int. J. Miner. Process., 1997, 50, 53.
  • [67] A.V. Nguyen, AIChE J. 1998, 44, 226.
  • [68] S. Ng, P. Warszynski, M. Zembala, K. Malysa, Physicochem. Probl. Miner. Process., 1999, 33, 143.
  • [69] S. Ng, P. Warszynski, M. Zembala, K. Malysa, Miner. Eng., 2000, 13, 1505.
  • [70] www.fao.org (21.04.2021)
  • [71] G. Loglio, N. Degli Innocenti, U. Tesei, R. Cini, Q.-S. Wang, 1989, 12, 289.
  • [72] C. Ybert, J.-M. di Meglio, Eur. Phys. J. B, 1998, 4, 313.
  • [73] C. Ybert, J.-M. di Meglio, Eur. Phys. J. E, 2000, 3, 143.
  • [74] B. Lalanne, O. Masbernat, F. Risso, PRL, 2020, 124, 194501.
  • [75] J. Zawala, N. Niecikowska, Rev. Sci. Instrum., 2017, 88, 095106.
  • [76] J. Zawala, K. Święch, K. Małysa, Colloids Surf. A., 2007, 302, 293.
  • [77] J. Zawala, E. Małysa, M. Krzan, K. Małysa, Physicochem. Probl. Miner. Process., 2014, 50, 143.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dac972ce-9de3-4a1e-8e1d-8fa1fab7fcb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.