PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of natural and synthetic dyes on the absorbance of nanocrystalline TiO2 used in dye sensitized solar cells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the paper is to examine the impact of selected dyes, organic and synthetic, on the absorbance of nanocrystalline titanium oxide. It is a major component of the working electrode of dye sensitized solar cells. Those devices belonging to the third generation of solar cells are an attractive alternative to inorganic solar cells. Therefore it intensive research on increasing their efficiency were carried out. Design/methodology/approach: Nanocrystalline titanium dioxide powder was manufactured with the use of sol gel method. Then, the titanium dioxide layers were deposited on a glass substrate using a doctor blade technique. On the prepared layers commercial synthetic dye N3 and natural dye obtained from blueberry were deposited. The structure of manufactured TiO2 nanopowder was investigated using the high resolution transmission electron microscope. Optical properties of TiO2 layer with and without dye have been examined using an UV–VIS spectrometer. Findings: Results and their analysis show that it is possible to obtain nanocrystalline titanium dioxide using sol-gel method and then deposition of the various types of dyes effectively extending the range of the absorbance of light radiation. Practical implications: Nanocrystalline layers of titanium oxide are an essential element of the working electrode of dye sensitized solar cells. It is extremely important to search for new materials for sensitizing titanium dioxide to enhance the efficiency of the type of solar cell. Originality/value: The paper presents results of investigations of the influence of natural and synthetic dyes on the absorbance of noncommercial nanocrystalline TiO2 used in dye sensitized solar cells.
Rocznik
Strony
53--58
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Graduate of the Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Graduate of the Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] B. O’Regana, M. Gratzel, A low-cost high efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.
  • [2] F.O. Lenzmann, J.M. Kroon, Recent advances in dyesensitized solar cells, Advances in OptoElectronics 7 (2007) 1-10.
  • [3] M.K. Nazeeruddin, F.de Angelis, S. Fantacci, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, Journal of the American Chemical Society 127 (2005) 16835-16847.
  • [4] J.H. Yum, E. Baranof, S. Wenger, M.K. Nazeeruddin, M. Gratzel, Panchromatic engineering for dyesensitized solar cells, Energy and Environmental Science 4 (2011) 842-857.
  • [5] J. Weszka, M.M. Szindler, M. Chwastek-Ogierman, M. Bruma, P. Jarka, CLSM and UV-VIS researches on polyoxadiazoles thin films, Archives of Materials Science 2 (2012) 53-65.
  • [6] G. Smestad, C. Bignozzi, R. Argazzi, Testing of Dye Sensitized TiO2 solar-cells-experimental photocurrent output and conversion efficiencies, Solar Energy Materials And Solar Cells 32 (1994) 259-272.
  • [7] S.K. Bahador, Semiconducting metal oxide photoelectrodes: Their probed characteristics and implications, International Journal Of Materials & Product Technology 10 (1995) 456-477.
  • [8] L.A. Dobrzański, M. Szindler, Sol gel TiO2 antireflection coatings for silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 52 (2012) 7-14.
  • [9] L.A Dobrzański, A. Dobrzańska-Danikiewicz, The surface treatment of engineering materials, Open Access Library 5 (2011) 1-480.
  • [10] A. Drygała, L.A. Dobrzański, et. al., Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon, International Journal of Hydrogen Energy (2016) 1-5, DOI: 10.1016/j.ijhydene.2015.12.180 (in press).
  • [11] O.L. Schevaleevskii, L.L. Larina, E.M. Trukhan, Interface charge separation processes in TiO2-based solar cells, Solid State Phenomena B51 (1996) 547-552.
  • [12] A. Turkovic, H. Zorc, et. al., Comparative study of organometallic dyes and fullerenes in dye-sensitized TiO2 solar cells, Strojarstvo 38 (1996) 227-230.
  • [13] J. Rajan, T. Velmurugan, et. al., Metal Oxides for Dye-Sensitized Solar Cells, Journal American Ceramic Society 92 (2009) 289-301.
  • [14] M. Umer, R. Saleem, et. al., Recent Advances in Dye Sensitized Solar Cells, Advances in Materials Science and Engineering 14 (2014) 1-12.
  • [15] A. S. Polo, M. K. Itokazu, Metal complex sensitizers in dye-sensitized solar cells, Coordination Chemistry, 248 (2004) 1343-1361.
  • [16] Y. Takahashi, H. Arakawa, H. Sugihara et. al., Highly effiicient polypyridyl-ruthenium (II) photosensitizers with chelating oxygen donor ligands: b diketonato-bis (dicarboxybipyridine) ruthenium, Inorganica Chimica Acta 310 (2000) 169-174.
  • [17] A. Mishra, M.K.R. Fischer, et. al., Metal-Free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules, Angewandte Chemise International Edition 48 (2009) 2474-2499.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dac0760a-7792-4d8a-89e4-06a05f3085a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.