PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new method for identification of cyclic plasticity model parameters

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a new method for determining the material parameters of cyclic plasticity is presented. The method can be applied to evaluate the model parameters from any loading histories measured experimentally. The experimental data require basic processing only to be utilized. The method can be applied to calibrate the parameters of different elastoplastic models such as the Chaboche-Rousselier (Ch–R) constitutive equation or other model formulations which use different rules of isotropic hardening. The developed method was utilized to evaluate the material parameters of copper for a selected group of constitutive models. It is shown that among the considered model formulations a very good description of the mechanical properties of copper is achieved for the Ch-R model with two Voce terms used for simulating the isotropic hardening and two backstress variables utilized for capturing the kinematic hardening behavior. Furthermore, it is demonstrated that a model calibrated using the cyclic tension/compression data is able to properly capture the material response in torsion. Similarly, when the constitutive parameters are determined using the cyclic torsion data the model is able to properly reproduce the material behavior in tension/compression. It is concluded that for the considered type of constitutive equations the material parameters can be identified from a single mechanical test. The proposed methodology was validated using the relations derived analytically.
Rocznik
Strony
art. no. e69, 1--14
Opis fizyczny
Bibliogr. 23 poz., il., tab., wykr., wzory
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • 1.Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch Civ Mech Eng. 2021;21:1-19. https://doi.org/10.1007/s43452-021-00264-w.
  • 2. Safaei B. The effect of embedding a porous core on the free vibration behavior of laminated composite plates. Steel Compos Struct. 2020;35:659-670. https://doi.org/10.12989/scs.2020.35.5.659.
  • 3. Wu H-C. Continuum mechanics and plasticity. New York: Chapman & Hall/CRC Press; 2005.
  • 4. Voce E. The relationship between stress and strain for homogeneous deformation. J Inst Metals. 1948;74:537-562.
  • 5. Prager W. A new method for analyzing stresses and strains in work hardening plastic solids. J Appl Mech. 1956;23:795-810.
  • 6. Armstrong P.J, Frederick C.O. A mathematical representation of the multiaxial Bauschinger effect. GEGB report RD/B/N731, Berkley Nuclear Laboratories (1966).
  • 7. Chaboche JL, Rousselier G. On the plastic and viscoplastic constitutive equations - part I: rules developed with internal variable concept. J Press Vessel Technol. 1983;105:153-158.
  • 8. Chaboche JL, Rousselier G. On the plastic and viscoplastic constitutive equations - part II: application of internal variable concepts to the 316 stainless steel. J Press Vessel Technol. 1983;105:159-164.
  • 9. Yoshida F, Urabe M, Hino R, Toropov VV. Inverse approach to identification of material parameters of cyclic elastoplasticity for component layers of a bimetallic sheet. Int J Plast. 2003;19:2149-70.
  • 10. Chaboche JL. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int J Plast. 1989;5:247-302.
  • 11. Mahmoudi AH, Pezeshki-Najafabadi SM, Badnava H. Parameter determination of Chaboche kinematic hardening model using a multi objective Genetic Algorithm. Comput Mater Sci. 2011;50:1114-22.
  • 12. Mancini E, Isidori D, Sasso M, Cristalli C, Amodio D, Lenci S. Characterization of the cyclic-plastic behaviour of flexible structures by applying the Chaboche model. Arch Civ Mech Eng. 2017;17:761-775.
  • 13. Nath A, Barai SV, Ray KK. Studies on the experimental and simulated cyclic-plastic response of structural mild steels. J Constr Steel Res. 2021;182:1–14. https://doi.org/10.1016/j.jcsr.2021.106652.
  • 14. Zimniak Z, Wiewiórska M. Material parameter identification method considering the Bauschinger effect in sheet metal forming modeling. Paper presented at the 7th conference on the physical and mathematical modeling of metal forming processes, Warsaw University of Technology, Jabłonna, 19-21 May 2011 (2011) [in Polish]
  • 15. Wójcik M, Skrzat A. Fuzzy logic enhancement of material hardening parameters obtained from tension-compression test. Continuum Mech Thermodyn. 2020;32:959-969. https://doi.org/10.1007/s00161-019-00805-y.
  • 16. Wójcik M, Skrzat A. Identification of Chaboche-Lemaitre combined isotropic-kinematic hardening model parameters assisted by the fuzzy logic analysis. Acta Mech. 2021;232:685-708. https://doi.org/10.1007/s00707-020-02851-z.
  • 17. Franulovic M, Basan R, Markovic K. Material Behavior Simulation of 42CrMo4 Steel. Paper presented at the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications SIMULTECH 2016 (2016).
  • 18. Ceremak M, Halama R, Karasek T, Rojicek J. Parameter identification of Chaboche material model using indentation test data and inverse approach. Paper presented at the 6th International Conference on Computational Methods for Coupled Problems in Science and Engineering COUPLED PROBLEMS 2015 (2015).
  • 19. Wójcik M, Skrzat A. The application of Chaboche model in uniaxial ratcheting simulations. Adv Manuf Sci Tech. 2020;44:57-61. https://doi.org/10.2478/amst-2019-0010.
  • 20. Simo JC, Hughes TJR. Computational inelasticity. New York: Springer Verlag; 2000.
  • 21. Suchocki C. On finite element implementation of cyclic elasto-plasticity: theory, coding and exemplary problems. Acta Mech. 2022;233:83-120. https://doi.org/10.1007/s00707-021-03069-3.
  • 22. Scilab: Documentation https://wiki.scilab.org/Documentationm(2020). Accessed 11 May 2021.
  • 23. The Engineering Tool Box https://www.engineeringtoolbox.com. Accessed 15 November 2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-daba81f5-a00f-494c-834e-22d9a9ab513c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.