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In the paper the issues related to the application of adaptive neuro-fuzzy controller for 
speed controller of an electrical motor are considered. Adaptive control structure with 
reference model (MRAS) is used. The standard controller is modified by the 
implementation of competitive Petri layers into its internal structure. The proposed 
modification improves the properties of the drive compared to the control structure with 
standard neuro-fuzzy controller. Theoretical considerations are confirmed by simulation 
studies experimental tests done on the laboratory stand.
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1. Introduction

The intensive development o f novel or modification o f existing control 
structures steams from the continuous increase in requirements for the new 
equipments [2]. The solutions which are robust to the parameter changes o f the 
plant, energy saving, shorten the transients are look after in industrial application
[13], [12], [16]. In the recent years fuzzy control becomes extremely popular in 
almost all industrial fields including electrical drives. However, the standard fuzzy 
controllers have some limitation -  they are not totally robust to existing 
disturbances. One o f the solution is to connect the fuzzy controllers with adaptive 
methodology. The examples o f such concepts are presented in [10], [11], [3], [5]. 
Despite the superior performance o f such control structure the additional 
modifications are look after. In the last few years there is a tendency to connect the 
Petri nets with the fuzzy controller [16], [17]. Despite the classical Petri nets were 
used in different fields e.g. informatics, manufacturing processes etc. [15], [9], [8],
[6] their connection with fuzzy logic improve the adaptive structure characteristic.

The main goal o f this paper is to present the advanced concepts for a high
performance drive system with changeable inertia. First a mathematical model of 
the plant is introduced. Then the adaptive fuzzy controller with Petri nets is 
described in detail. Next the simulation results are demonstrated and described. 
After that the results o f the experimental tests are shown. The paper is summarized 
with some concluding remarks.
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2. Mathematical model of control system

A typical electrical drive system is composed o f a power converter-fed motor 
coupled to a mechanical system, a microprocessor-based system controller, current 
speed and/or positions sensors used as feedback signals. Typically, cascade control 
structure containing two major control loops is used. The inner control loop 
performs a motor torque regulation and consists o f the power converter, 
electromagnetic part o f the motor, current sensor and respective current or torque 
controller. Therefore, this control loop is designed to provide sufficiently fast 
torque control, so it can be approximated by an equivalent first order term. If this 
control is ensured, the driven machine could be AC or DC motor, with no 
difference in the outer control loop. The outer loop consists o f the mechanical part 
o f the motor, speed sensor, speed controller, and is cascaded to the inner loop. It 
provides speed control according to the reference value. The block diagram o f the 
cascade control structure is shown in Fig. 1 [10].
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Electrical motor 
and load 
machine

Fig. 1. The classical cascade control structure

In this paper the commonly-used model o f the drive system with the resilient 
coupling is considered. The system is described by the following equations (in per 
unit system) [3], [7], [14].

0  =  T -  (m e -  m s ). (1)
T 1

° 2  = -1  (m s -  m L ) . (2)
?2

•  1 I \m s = —  (  - a >2). (3)
TC

where: o ; -  motor speed, a  -  load speed, me -  motor torque, ms -  shaft (torsional) 
torque, mL -  disturbance torque,?7; -  mechanical time constant o f the motor, 
T2 -  mechanical time constant o f the load machine, Tc -  stiffness time constant.
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3. Adaptive neuro-fuzzy controller with competitive Petri layers

The model reference adaptive control structure with the on-line tuned fuzzy 
controller is proposed for the drive system. The general diagram o f the adaptation
system is presented in Fig. 2.
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Fig. 2. Structure of the adaptive control system with the SNFC

The fuzzy controller is tuned so that the actual drive output could follow the 
output o f the reference model. The tracking error is used as the tuning signal. The
reference model is chosen as a standard second order term.

_. 2

Gm (s) = - t - Z --------2 (4)s 2 + 2C(0 s + 2 ̂ n n
where Z and (On are the assumed damping ratio and resonant frequency.

The supervised gradient descent algorithm is used to tune the parameters 
w h ...,wM o f the 4th layer of the neuro-fuzzy structure presented in Fig. 4, to obtain 
the minimizing of the cost function defined below:

J  = | (2 - 2 i2)2 = 1  (5)

where em -  error between model response a  and actual speed o f the drive system a  
Parameter adaptation is obtained using the following expression:

Wj (k + 1) = Wj (k) + AWj (6)

where:

dJ
Aw. = - Y ----- = Y

d w .
'  dJ ' fyo
v dyo y _ dw. _

= Y0ou ,
j

u -  is the normalized firing strength of j-th rule, y -  learning rate and

s  = _ _ d J = _ _ d J = _ _ J  dem 2 i2 (8)
0 dyo dem dyo dem d 2 12

Expression (9) involves computation of the gradient of a2 with respect to the output 
o f the controller y o , which is the reference electromagnetic torque mer. The exact
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calculation of this gradient cannot be determined due to the uncertainty of the plant and 
nonlinear friction characteristic. However, it can be assumed that the change of the 
drive speed with respect to the motor torque or current is a monotonic increasing 
process. Thus, this gradient can be approximated by some positive constant values. 
Owing to the nature of the gradient descent search only the sign of the gradient is 
critical to the iterative algorithm convergence. So the adaptation law of the controller 
parameters can be written as:

Wj ( k  +1) = Wj  (k) + y S o U j  =  Wj  (k) +  y e m U  j (9)

The learning speed of the above algorithm is usually not satisfactory due to the 
slow convergence. To overcome this weakness, a modified algorithm based on local 
gradient PD control is used:

S = e + Ae (10)
where Aem is the derivative of the em.

The learning rate y  can be divided into two factors kp and kd for em and Aem , 
respectively. The derivative term is used to suppress a large gradient rate. Thus, in 
formula (10), the similarity to the back propagation algorithm (with the learning rate 
and momentum factor) used for neural network training can be seen.

The general diagram of the used fuzzy controller is presented in Fig. 3. It 
describes the relationship between the speed error e(k), its change Ae(k) and change 
of the control signal Au(k). [12], [1], [18],

e(k)
■ © ->

Ae(k)
^ jiil
i t /

Au (k)
>

Fig. 3. A general structure of a fuzzy controller

The Pi-type fuzzy logic system has an output integrator presented in Fig. 2 with 
the dotted line. On the contrary, the PD-type structure consider dint the paper does 
not have it. The control surface of the fuzzy system can be also seen as the nonlinear 
switching function. So this controller is treated as the fuzzy sliding-mode controller 
(FSMC) in the present study.

According to the literature, two main frameworks of the fuzzy sliding mode 
control can be distinguished. In the first one the switching surface s is calculated 
directly. Then, on the basis of the obtained function s, the nonlinear switching 
function is approximated by the fuzzy system. In the second framework the 
switching surface is not directly visible. It can be calculated from the properties of 
the rule base, which describe the relationship between the error (e) and the change

-1z

z
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of the error (Ae). Similarly to the classical sliding mode control, the switching 
surface is described by:

s* = X e *  + Ae* (11)
where X  represents the slope o f the switching line X e  * + Ae * = 0. The parameter 
X  can be calculated based on the range o f the universe o f discourse o f the input 
variable (e, Ae).

The rule base o f the fuzzy controller incorporates several IF-THEN rules. They 
can be written in the following form:

Rj: I F x 1 is A /  and x2 is A2l THEN y  = wi, (12)
where xi -  input variable of the system, A/ -  input membership function, wi -  
consequent function.

Schematic diagram of the adaptive neuro-fuzzy controller with competitive 
Petri layers is shown in Fig. 4.

em(k),----------------
-------------- ADAPTATION
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Aem(k) ALGORITHM

Fig. 4. Adaptive neuro-fuzzy controller with two Petri layers

This system can be divided into several layers with the following functions.
Layer 1. The nodes o f the first layer pass the input signal into the second layer. 

Each node in this layer corresponds to a specific input variables (x1=e(k); x2=Ae(k)).
Layer 2. Each node of this layer represents the specific input membership 

functions A/. In this point the input signals are fuzzified.
Layer 3. Each node in this layer represents the premises part o f fuzzy rule. The 

symbol n  represents the used t-norm operation which in this study is the prod  
function. It means that the incoming signals of each rule are multiplied. Then the 
result is send to the next layer.

Layer 4. In this layer the output signal of the fuzzy system is calculated. First, the 
incoming signals are multiplied by the output singletons w;-. Then, according to (4), 
the defuzzyfication procedure known as the singleton method is performed:
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M
Au = yo = X  wjuj (13)

j=1
In this paper, implementation o f a competitive Petri layer [16], [17] for the 

fuzzy controller with 9 rules and Gaussian-type input functions is investigated. 
Two possible placed o f a competitive layer are tested. In the first case the Petri 
Layer is put between input membership functions and inference layer, which is a 
solution corresponding to [16], [17]

In the second case, the Petri layer is implemented into adaptation mechanism of 
the controller. In that solution, an analogy to a competitive learning Winner Takes 
it All (WTA) [4] (typical for neural networks) can be seen.

Competitive Petri layer specifies the number o f the input signals which are 
transferred to the outputs according to the following formulas:

A = m ax_k< sort in \  (14)
k= 1 ..N d <n [ i=L ..n j

o u ti = in i (15)
in i6 A
i=1...n

Y  o u t t = 0 (16)
ini ¿ A
i=1...n

where A  -  vector o f k  maximum values from input vector, max k  -  selection 
operator of k  maximum values from the input vector, sort - operator of sorting 
vector by absolute values, in - input vector, Nd - maximum number of values 
designed to remain active, n - the length o f the input and output vectors.

The considered neuro-fuzzy controller has two inputs with each have three 
membership functions. It creates in the output the o f this layer 6 signals. 
Accordingly to the structure of neuro-fuzzy system the output of the successive 
layer consist of 9 signals. Competitive Petri layer acts like input vector critic. It 
transfers to its output only signals greater or equal to k-th smallest signal in terms 
o f its absolute value. The other smaller signals are rejected.

4. Simulation results

In this section the results related to the simulation study o f adaptive neuro-fuzzy 
controller with competitive Petri layers are shown. Two quality indexes are 
considered. B1 is integer o f squared error (ISE) for the first 5 seconds o f the 
simulation. During this time system adapts its weight significantly. Second 
indicator B2 is integer of squared error from 5th to 15th seconds when weights are 
changed only slightly. This index is connected to the reaction o f the system to the 
application o f the load torque.

P. Derugo, K. Szabat /  Analysis o f adaptive neuro-fuzzy PD controller .
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Analyzing Tables 1 and 2 it is clearly seen that Petri Layers are giving good 
effects in case o f B1 indicator. Especially layer k1 ensures good performance o f the 
system. Improvement in B1 indicator means improvement o f initial adaptation 
possibility o f the regulator. Unfortunately any other value o f k1 coefficient than 0, 
results in very big increase o f B2 indicator.
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Table 1. Summary value changes of B1 (0-5 s) control quality indicator

\  k2
k1 \

0 1 2 3 4 5 6 7 8

0 0,0% -0,3% -0,5% -1,5% -1,1% -9,4% -10,3% -8,2% 116%
1 -28,5% -28,5% -28,5% -28,5% -29,7% -31,0% -27,1% -25,3% 117%
2 -25,7% -25,7% -25,7% -25,7% -25,7% -25,7% -29,2% -25,7% 117%
3 -28,5% -28,5% -28,5% -28,5% -28,5% -28,5% -28,5% -28,5% 120%
4 205% 205% 205% 205% 205% 205% 205% 205% 205%
5 NS NS NS NS NS NS NS NS NS

Table 2. Summary value changes of B2 (5-15s) control quality indicator

\  k2 
k1 \

0 1 2 3 4 5 6 7 8

0 0,0 % 0,0% -0,1% 0,0% 0,0% -0,6% -0,6% -0,6% 101%
1 486% 486% 486% 486% 478% 466% 460% 479% 92,8%
2 275% 275% 275% 275% 275% 275% 259% 276% 93,1%
3 387% 387% 387% 387% 387% 387% 387% 387% 89,7%
4 244% 244% 244% 244% 244% 244% 244% 244% 244%
5 NS NS NS NS NS NS NS NS NS

Selected transients o f system states are presented in Figures 5-8. Firstly the 
system without Petri nets is analyzed. The system transients are shown in Fig. 5. 
As can be seen the initial values o f the weight are set to zeros. Then, as the time 
pass by, their values is changing to optimal position in order to minimize the 
tracking error of the plant.

Then the system with one Petri layer is tested. The transients o f system with 
implemented Petri Layer that resets 6 signals in k2 layer are shown in Fig. 6. The 
biggest difference between the Fig. 5 and 6 evident in the weight transients. The 
application of the Petri layer results in faster in case o f the biggest weights. The 
disparity between the speeds or torques are much smaller.

Next the system with two Petri layer is examined. In Fig. 7 transients of system 
with k2 Petri Layer that resets 6 signals are shown. Significant reduction of 
difference between measured and reference model velocity in first period o f system 
operation can be seen. During following periods big oscillations in current and 
bigger errors in speed are evident into transients. W hat is more oscillations with big 
frequency and small amplitude appeared in motors velocity.
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Fig. 5. Transients of system without Petri layers
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Fig. 6. Transients of system with Petri layers k1 resetting 0 signals and k2 resetting 6 signals
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Fig. 7. Transients of system with Petri layers with k1 resetting 2 signals and k2 resetting 6 signals

Fig. 8. Comparison of difference between model and motor velocity for different number of resetted
signals in Petri Layers

In the Figure 8 transients of differences between reference model and drive 
velocity for selected systems with and without competitive Petri layers are 
presented. As can be easily seen, the system with controller with k2 layer that resets 
6 signals allows to obtain better properties of the speed control. The error in 
dynamic states, such as change of load or reference speed, is smaller than in system 
with original regulator. Looking at transient of system with two layers, k1 resetting 
2 and k2 resetting 6 signals, it can be easy to noticed that tracking errors are much 
smaller for reference changes. However during steady states, especially in later
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periods o f system operation, errors are bigger. This suggests that it is worthwhile to 
consider switching layer parameters during system operation.

5. Experimental result

Experimental studies have been carried on a laboratory system consisting o f two 
DC motors. Power output is a H bridge. Control is performed by PC computer 
equipped with digital signal processor and dSPACE 1106 card. Control circuit is 
sampled at 2 kHz frequency. Two mass system is obtained using elastic shaft. 
Block diagram of the test system is shown in Figure 9.
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Fig. 9. Block diagram of the experimental

After simulations, for experimental study three cases were selected, original 
regulator without Petri layers as reference point, regulator with k2 layer resetting 6 
signals and regulator with both layers k1 resetting 2 signals and k2 resetting
6 signals. Results are shown in Table 3. Indicators B1 and B2 are defined as in 
simulations.

As it can be seen both indicators showed similar behavior as during simulations.

Table 3. Summary value changes of B1 and B2 control quality indicators

k1 = 0; k2 = 0 k1 = 0; k2 = 6 k1 = 2; k2 = 6
B1 0,0% -0,7% -26,9%
B2 0,0% -15,2% 115,3%

Similarly to simulations, in Figures 10-12 some of chosen system transients are 
presented for same parameters o f k1 and k2 layers. Comparing them big increase of 
difference between motor speed and reference model speed in case o f system with 
regulator with 2 layers (Fig. 12) can be seen.
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What is also clearly visible rate o f weight coefficients in systems with Petri 
layers is much bigger than in original system without Petri layers.
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Fig. 10. Chosen experimental transients of system with PD regulator without Petri layers

Fig. 11. Chosen experimental transients of system with PD regulator with Petri layers k1 resetting
0 signals and k2 resetting 6 signals
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Fig. 12. Chosen experimental transients of system with PD regulator with Petri layers k1 resetting
2 signals and k2 resetting 6 signals

Figure 13 shows comparison o f difference between motor and reference model 
speed transients for different investigated Petri layers implementations. Similarly 
as in simulations system with regulator with k2 layer resetting 6 signals smaller 
errors over the transient can be noticed. Also transient of system with both Petri 
layers acts as in simulation tests, much smaller errors during motor returns, and 
much bigger errors in static states especially in later periods o f system work.

Fig. 13. Comparison of difference between model and motor velocity for different number of resetted
signals in Petri Layers
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6. Conclusions

In the paper an adaptive control structures based on the MRAS concept have been 
investigated. As a classical approach the system with standard neuro-fuzzy controller is 
implemented. The obtained results confirm good dynamic properties of the drive, Then 
the control structure with the neuro-fuzzy speed controller with Petri layers are 
considered. This control structure ensures better performance of the drive systems. The 
tracking error is reduced by 30% in the first 5 second of the work. However, it should 
be noticed that in next period of the system work the application of the Petri layer is not 
so effective. During experimental research theory has been proven, system behaved 
in similar way as in simulations. In the next study the system with variable Petri 
nets will be considered.
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