PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial and temporal precipitation trends of proposed smart cities based on homogeneous monsoon regions across India

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The conservation of rainwater and augmentation of groundwater reserve is necessary to meet the increased water demands. Precipitation occurring in the smart cities need to be understood for a better water management action plan. Therefore, monotonic precipitation trend analysis was performed for eight smart cities drawn from six monsoon homogeneous regions across India. The precipitation data were investigated for trends using the modified Mann–Kendall (MMK) test and Sen’s slope estimator at annual, seasonal and monthly scales. The trend analysis was carried out over 118 years (from 1901 to 2018) at 95% significance level. The Dehradun city (Northern Himalayan region) showed a significant increasing annual precipitation trend (Z = +3.22). Indore and Bhopal cities from West Central region showed significant increasing annual trend (Z = +2.01) and non-significant decreasing annual trend respectively. Although, Vadodara and Jaipur are lying in the same Northwest region, the trends are opposite in nature. Jaipur city showed a significant increasing annual pre-monsoon trend (Z = +2.44). The winter rainfall in the city of Vadodara is showing a significant decreasing trend (Z = –2.16). The pre-monsoon rainfall in Bhubaneswar (Central Northeast region) and monsoon precipitation in Trivandrum (Peninsular region) are showing significant increasing (Z = +2.56) and decreasing (Z = –2.71) trends, respectively. A non-significant decreasing trend was seen in Guwahati city (Northeast region). The eight smart cities selected for investigation are not truly representing the entire country. However, the study is clearly pointing towards the regional disparity existing in the coun-try. These findings will be helpful for water managers and policymakers in these regions for better water management.
Wydawca
Rocznik
Tom
Strony
150--159
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
autor
  • Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
  • National Institute of Hydrology Roorkee, Roorkee, Uttarakhand 247667, India
  • National Institute of Hydrology Roorkee, Roorkee, Uttarakhand 247667, India
  • National Institute of Hydrology Roorkee, Roorkee, Uttarakhand 247667, India
Bibliografia
  • ABEYSINGHA N.S., SINGHM., SEHGAL V.K., KHANNAM., PATHAK H. 2016. Analysis of trends in streamflow and its linkages with rainfall and anthropogenic factors in Gomti River basin of North India. Theoretical and Applied Climatology. Vol. 123 p. 785–799. DOI 10.1007/s00704-015-1390-5.
  • ALDRIAN E., DJAMIL Y.S. 2008. Spatio‐temporal climatic change of rainfall in East Java Indonesia. International Journal of Climatology. Vol. 28. Iss. 4 p. 435–448. DOI 10.1002/joc. 1543.
  • ASTARAIE-IMANI M., KAPELAN Z., FU G., BUTLER D. 2012. Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK. Journal of Environmental Management. Vol. 112 p. 1–9. DOI 10.1016/j.jenvman. 2012.06.039.
  • BISHT D.S., CHATTERJEE C., RAGHUWANSHI N.S., SRIDHAR V. 2018. Spatio-temporal trends of rainfall across Indian river basins. Theoretical and Applied Climatology. Vol. 132 p. 419–436. DOI 10.1007/s00704-017-2095-8.
  • CUNDERLIK J.M., OUARDA T.B. 2009. Trends in the timing and magnitude of floods in Canada. Journal of Hydrology. Vol. 375 p. 471–480. DOI 10.1016/j.jhydrol.2009.06.050.
  • CWC 2019. Reassessment of water availability in India using space inputs [online]. Basin Planning & Management Organisation, Central Water Commission New Delhi. [Access 26.06.2020]. Available at: http://old.cwc.gov.in/main/downloads/ReassessmentMainReport.pdf
  • DAS P.K. 2015. Global warming, glacial lakes and cloud burst events in Garhwal-Kumaon Himalaya: A hypothetical analysis. International Journal of Environmental Sciences. Vol. 5. Iss. 4 p. 697–708. DOI 10.6088/ijes.2014050100065.
  • DAS S., TOMAR C.S., SAHA D., SHAW S.O., SINGH C. 2015. Trends in rainfall patterns over North-East India during 1961–2010. International Journal of Earth and Atmospheric Science. Vol. 2 p. 37–48.
  • DUHAN D., PANDEY A. 2013. Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmospheric Research. Vol. 122 p. 136–149. DOI 10.1016/j.atmosres.2012.10.010.
  • GAJBHIYE S., MESHRAM C., SINGH S.K., SRIVASTAVA P.K., ISLAM T. 2016. Precipitation trend analysis of Sindh River basin, India, from 102‐year record (1901–2002). Atmospheric Science Letters. Vol. 17. Iss. 1 p. 71–77. DOI 10.1002/asl.602.
  • GUERREIRO S. B., GLENIS V., DAWSON R. J., KILSBY C. 2017. Pluvial flooding in European cities – A continental approach to urban flood modelling. Water. Vol. 9. Iss. 4 p. 296. DOI 10.3390/w9040296.
  • IPCC 2018. Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Eds. V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield. Geneva, Switzerland. WMO pp. 32.
  • KENDALL M.G. 1975. Rank correlation methods. 4th ed. London. Charles Griffin. ISBN 0852641990 pp. 202.
  • KHATIWADA K.R., PANTHI J., SHRESTHA M.L., NEPAL S. 2016. Hydro-climatic variability in the Karnali River basin of Nepal Himalaya. Climate. Vol. 4. Iss. 2 p. 17–21. DOI 10.3390/ cli4020017.
  • KOTHAWALE D.R., RUPA KUMAR K. 2005. On the recent changes in surface temperature trends over India. Geophysical Research Letters. Vol. 32. Iss. 18 p. 1–4. DOI 10.1029/2005 GL023528.
  • KUNDU S., KHARE D., MONDAL A., MISHRA P.K. 2015. Analysis of spatial and temporal variation in rainfall trend of Madhya Pradesh, India (1901–2011). Environmental Earth Sciences. Vol. 73 p. 8197–8216. DOI 10.1007/s12665-014-3978-y.
  • LACOMBE G., MCCARTNEY M. 2014. Uncovering consistencies in Indian rainfall trends observed over the last half century. Climatic Change. Vol. 123 p. 287–299. DOI 10.1007/s10584-013-1036-5.
  • LIUZZO L., BONO E., SAMMARTANO V., FRENI G. 2016. Analysis of spatial and temporal rainfall trends in Sicily during the 1921–2012 period. Theoretical and Applied Climatology. Vol. 126 p. 113–129. DOI 10.1007/s00704-015-1561-4.
  • MAHARANA P., DIMRI A.P. 2014. Study of seasonal climatology and interannual variability over India and its subregions using a regional climate model (RegCM3). Journal of Earth System Science. Vol. 123. No. 5 p. 1147–1169. DOI 10.1007/ s12040-014-0447-7.
  • MANN H.B. 1945. Non-parametric test against trend. Econometrica. Vol. 13 p. 245–259.
  • MODARRES R., DA SILVA R.V.P. 2007. Rainfall trends in arid and semi-arid regions of Iran. Journal of Arid Environment. Vol. 70. Iss. 2 p. 344–355. DOI 10.1016/j.jaridenv.2006.12.024.
  • NASRI M.,MODARRES R. 2009. Dry spell trend analysis of Isfahan Province, Iran. International Journal of Climatology. Vol. 29 p. 1430–1438. DOI 10.1002/joc.1805.
  • NITI AAYOG 2018. Composite Water: Management Index: A Tool for Water Management [online]. Ministry of Water Resources, Ministry of Drinking Water and Sanitation, Ministry of Rural Development, Government of India. [Access 1.06.2020]. Available at: http://social.niti.gov.in/uploads/sample/water_index_report.pdf
  • ONGOMA V., CHEN H. 2017. Temporal and spatial variability of temperature and precipitation over East Africa from 1951 to 2010. Meteorology and Atmospheric Physics. Vol. 129 p. 131–144. DOI 10.1007/s00703-016-0462-0.
  • PALIZDAN N., FALAMARZI Y., HUANG Y.F., LEE T.S., GHAZALI A.H. 2015. Temporal precipitation trend analysis at the Langat River Basin, Selangor, Malaysia. Journal of Earth System Science. Vol. 124 p. 1623–1638. DOI 10.1007/ s12040-015-0636-z.
  • PANTHI J., DAHAL P., SHRESTHA M.L., ARYAL S., KRAKAUER N.Y., PRADHANANG S.M., LAKHANKAR T., JHA A.K., SHARMA M., KARKI R. 2015. Spatial and temporal variability of rainfall in the Gandaki River Basin of Nepal Himalaya. Climate. Vol. 3 p. 210–226. DOI 10.3390/cli3010210.
  • PATHWATHAN S., KULKARNI A., KOTESWARA RAO K. 2018. Projected changes in rainfall and temperature over homogeneous regions of India. Theoretical and Applied Climatology. Vol. 131 p. 581–592. DOI 10.1007/s00704-016-1999-z.
  • PATRA J.P., MISHRA A., SINGH R. RAGHUWANSHI N.S. 2011. Detecting rainfall trends in twentieth century (1871–2006) over Orissa State, India. Climatic Change. Vol. 111 p. 801–817. DOI 10.1007/s10584-011-0215-5.
  • PINGALE S., ADAMOWSKI J., JAT M., KHARE D. 2015. Implications of spatial scale on climate change assessments. Journal of Water and Land Development. No. 26 p. 37–56. DOI 10.1515/jwld-2015-0015.
  • PINGALE S., KHARE D., JAT M., ADAMOWSKI J. 2014. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centres of the arid and semi-arid state of Rajasthan, India. Atmospheric Research. Vol. 138 p. 73–90. DOI 10.1016/j.atmosres.2013.10.024.
  • PINGALE S.M., KHARE D., JAT M.K., ADAMOWSKI J. 2016. Trend analysis of climatic variables in an arid and semi-arid region of the Ajmer District, Rajasthan, India. Journal of Water and Land Development. No. 28 p. 3–18. DOI 10.1515/jwld-2016-0001.
  • PRANUTHI G., DUBEY S.K., TRIPATHI S.K., CHANDNIHA S.K. 2014. Trend and change point detection of precipitation in urbanizing Districts of Uttarakhand in India. Indian Journal of Science and Technology. Vol. 7. Iss. 10 p. 1573–1582. DOI 10.17485/ijst/2014/v7i10.20.
  • RODRIGO F.S., TRIGO R.M. 2007. Trends in daily rainfall in the Iberian Peninsula from 1951 to 2002. International Journal of Climatology. Vol. 27 p. 513–529. DOI 10.1002/joc.1409.
  • SCM 2020. How Many Smart Cities in Each State/UT? [online]. Smart cities mission. Government of India pp. 2. [Access 08.03.2020]. Available at: http://smartcities.gov.in/content/innerpage/no-of-smart-cities-in-each-state.php
  • SEN P.K. 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association. Vol. 63. Iss. 324 p. 1379–1389. DOI 10.1080/ 01621459.1968.10480934.
  • SZEWRAŃSKI S., CHRUŚCIŃSKI J., VAN HOOF J., KAZAK J.K., ŚWIĄDER M., TOKARCZYK-DOROCIAK K., ŻMUDA R. 2018. A location intelligence system for the assessment of pluvial flooding risk and the identification of storm water pollutant sources from roads in suburbanised areas. Water. Vol. 10. Iss. 6 p. 1–16. DOI 10.3390/w10060746.
  • SZEWRAŃSKI S., KAZAK J., SZKARADKIEWICZ M., SASIK J. 2015. Flood risk factors in suburban area in the context of climate change adaptation policies – Case study of Wroclaw, Poland. Journal of Ecological Engineering. Vol. 16. Iss. 2 p. 13–18.
  • WU H., QIAN H., 2017. Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. International Journal of Climatology. Vol. 37 p. 2582–2592. DOI 10.1002/joc.4866.
  • YILMAZ A.G., PERERA B.J.C. 2015. Spatiotemporal trend analysis of extreme rainfall events in Victoria, Australia. Water Resources Management. Vol. 29. Iss. 12 p. 4465–4480. DOI 10.1007/s11269-015-1070-3.
  • YUE S.,WANG C.Y. 2002. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann Kendall test. Water Resources Research. Vol. 38. Iss. 6, 1068 p. 4-1–4-7. DOI 10.1029/2001WR000861.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dab30fab-9fd5-443f-ab39-d4018de951ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.