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1. INTRODUCTION

The theory of fractional differential equations is an important branch of differential
equation theory, which has been applied in physics, chemistry, biology and engineering
and has emerged an important area of investigation in the last few decades. For some
fundamental results in the theory of fractional calculus and fractional differential
equations (see [4, 16, 18–20]). Random differential equations and random integral
equations have been studied systematically in Ladde and Lakshmikantham [17] and
Bharucha-Reid [3], respectively. They are good models in various branches of science
and engineering since random factors and uncertainties have been taken into considera-
tion. Hence, the study of the fractional differential equations with random parameters
seem to be a natural one. We refer the reader to the monographs [3, 17, 26, 27], the
papers [6–9,12,14] and the references therein.

Initial value problems for fractional differential equations with random parameters
have been studied by V. Lupulescu and S.K. Ntouyas [24]. The basic tool in the
study of the problems for random fractional differential equations is to treat it as
a fractional differential equation in some appropriate Banach space. In [25], authors
proved the existence results for a random fractional equation under a Carathéodory
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condition. Existence results for extremal random solution are also proved. For several
other research results see [22,23]. Continuing the work of the authors, in this paper,
we consider the fractional random differential equations with delay as follows:




Dαx(t, ω) [0,a], P−a.e.= fω(t, xt),
x(t, ω) [−σ,0]= ϕ(t, ω).

(1.1)

The random fractional differential equations with delay (1.1) is not new to the theory
of random differential equations. When the random parameter ω is absent, the random
equation (1.1) reduces to the fractional differential equations with delay,

{
Dαx(t) = f(t, xt) for t ∈ [0, a],
x(t) = ϕ(t) for t ∈ [−σ, 0].

(1.2)

The classical fractional differential equations with delay (1.2) has been studied in the
literature by several authors. See for example, M. Benchohra, et al. [2], J. Deng, et al.
[5] and the references therein.

In this paper, inspired and motivated by Lupulescu et al. [22–25] and Dhage
[6–9], under the condition of the Lipschitzean right-hand side we obtain the existence
and uniqueness of the solutions of the fractional random differential equations with
delay. To prove this assertion we use an idea of successive approximations which has
been applied in [21] for the fractional differential equations for this problem. The
paper is organized as follows. In Section 2, we set up the appropriate framework on
random processes and on fractional calculus. In Section 3, we prove the existence
and uniqueness of solutions of the fractional random differential equations with delay.
Moreover, some kind of boundedness of the solution is proven. Finally, in Section 4,
an example is given to illustrate our results

2. PRELIMINARIES

In this section, we give some notations and properties related to the sample path
fractional integral, the sample path fractional derivative and the metric space of
random elements. The reader can see the detailed results in the monographs [17,26,27],
the papers [24] and the references therein.

Let (Ω,A,P) be a complete probability space. Let ([0, a],L, λ) be a Lebesgue-
measure space where a > 0 and let x(·, ·) : [0, a]× Ω→ Rd be a product measurable
function. A mapping x(·, ·) : [0, a]×Ω→ Rd is called sample path Lebesgue integrable
on [0, a] if x(·, ω) : [0, a]→ Rd is Legesgue integrable on [0, a] for a.e. ω ∈ Ω.

Let α > 0. If x(·, ·) : [0, a]× Ω→ Rd is sample path Lebesgue integrable on [0, a],
then the fractional integral

Iαx(t, ω) = 1
Γ(α)

t∫

0

x(s, ω)
(t− s)1−α ds
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which will be called the sample path fractional integral of x, where Γ is Euler’s Gamma
function.

If x(·, ω) : [0, a] → Rd is Lebesgue integrable on [0, a] for a.e. ω ∈ Ω, then
t 7→ Iαx(t, ω) is also Lebesgue integrable on [0, a] for a.e. ω ∈ Ω. A mapping x(·, ·) :
[0, a]×Ω→ Rd is said to be a Carathéodory function if t 7→ x(t, ω) is continuous for a.e.
ω ∈ Ω and ω 7→ x(t, ω) is measurable for each t ∈ [0, a]. We recall that a Carathéodory
function is a product measurable function (see [13]), then function (t, ω) 7→ Iαx(t, ω)
is also a Carathéodory function (see [24]).

A mapping x(·, ·) : [0, a] × Ω → Rd is said to have a sample path derivative at
t ∈ (0, a) if the function t 7→ x(t, ω) has a derivative at t for a.e. ω ∈ Ω. We will
denote by d

dt
x(t, ω) or by x′(t, ω) the sample path derivative of x(·, ω) at t. We say

that x(·, ·) : [0, a]×Ω→ Rd is sample path differentiable on [0, a] if x(·, ·) has a sample
path derivative for each t ∈ (0, a) and possesses a one-sided sample path derivative at
the end points 0 and a.

If x(·, ·) : [0, a] × Ω → Rd is sample path absolutely continuous on [0, a], that is,
t 7→ x(t, ω) is absolutely continuous on [0, a] for a.e. ω ∈ Ω, then the sample path
derivative x′(t, ω) exists for λ-a.e. t ∈ [0, a]. Let x(·, ·) : [0, a] × Ω → Rd be sample
path absolutely continuous on [0, a] and let α ∈ (0, 1]. Then, for λ-a.e. and for a.e.
ω ∈ Ω, we define the Caputo sample path fractional derivative of x by

Dαx(t, ω) = I1−αx′(t, ω) = 1
Γ(1− α)

t∫

0

x′(s, ω)
(t− s)α ds.

Obviously, if x(·, ·) : [0, a]×Ω→ R is sample path differentiable on [0, a] and t 7→ x′(t, ω)
is continuous on [0, a], then Dαx(t, ω) exists for every t ∈ [0, a] and t 7→ Dαx(t, ω) is
continuous on [0, a].

If x(·, ·) : [0, a]× Ω→ Rd is a Carathéodory function, then

DαIαx(t, ω) = x(t, ω)

for all t ∈ [0, a] and for a.e. ω ∈ Ω.
If x(·, ·) : [0, a]× Ω→ R is sample path absolutely continuous on [0, a], then

IαDαx(t, ω) = x(t, ω)− x(0, ω) (2.1)

for λ-a.e. and for a.e. ω ∈ Ω.
If x(·, ·) : [0, a] × Ω → Rd is sample path differentiable on [0, a] and t 7→ x′(t, ω)

is continuous on [0, a], then (2.1) holds for all t ∈ [0, a] and for a.e. ω ∈ Ω. If x(·, ·) :
[0, a]× Ω→ Rd is sample path absolutely continuous on [0, a], then

t 7→ y(t, ω) = 1
Γ(1− α)

t∫

0

x(s, ω)
(t− s)α ds
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is also sample path absolutely continuous on [0, a]. Moreover, for λ-a.e. and for a.e.
ω ∈ Ω and a.e. ω ∈ Ω, we have that

y(t, ω) = 1
Γ(1− α)

d

dt

t∫

0

x(s, ω)
(t− s)α ds = Dαx(t, ω) + x(0, ω)

tαΓ(1− α) .

Let the space C = C([0, a],Rd) of all continuous functions from [0, a] from Rd
endowed with the uniform metric

d(x, y) = sup
t∈[0,a]

‖x(t)− y(t)‖,

where ‖ · ‖ is the Euclidean norm on Rd.
If x : Ω → C is a random element, then the function x(·, ·) : [0, a] × Ω → Rd

is a Carathéodory function. If x : Ω → C is a random element, then the function
x(·, ω) : [0, a]→ Rd is said to be a realization or a trajectory of the random element x,
corresponding to the outcome ω ∈ Ω.

Let M(C) be the space of all probability measures on B(C). If x : Ω → C is
a random element in C, then the probability measure µx, defined by

µx = P(x−1(B)) = P({ω ∈ Ω, x(ω) ∈ B}), B ∈ B(C),

is called the distribution of x. Since C has been a complete and separable metric space,
then it is well known that M(C) is a complete and a separable metric space with
respect to the Prohorov metric D : M(C)→ [0,∞) given by

D(µ, η) = inf{ε > 0, µ(B) ≤ η(Bε) + ε}, B ∈ B(C),

where Bα = {x ∈ C; inf
y∈B

d(x, y) < ε}.
Let R(Ω, C) be the metric space of all random elements in C. A sequence of random

variables {xn} ⊂ R(Ω, C) is said to converge almost everywhere (a.e.) to x ∈ R(Ω, C)
if there exists N ⊂ R such that P(N) = 0, and limn→∞ d(xn(ω), x(ω)) = 0 for
every ω ∈ Ω \N . We use the notation xn → x a.e. for almost everywhere convergence.
If {xn} ⊂ R(Ω, C) is a ρ convergent sequence, then it is known that {xn} is a ρ-Cauchy
sequence, where ρ(x, y) = D(µ, η) is a metric on the set of random elements in C
(see [11]).
Lemma 2.1 (see [24]). Let en : [0, a]×Ω→ Rd be a sequence of Carathéodory positive
functions and let u, v be positive constants such that e0(t, ω) ≤ u for every n ≥ 1,

en(t, ω) ≤ u+ v

Γ(α)

t∫

0

en−1(s, ω)
(t− s)1−α ds

for all t ∈ [0, a] and ω ∈ Ω. Then for every n ≥ 1,

en(t, ω) ≤ uEα(vaα), ω ∈ Ω,

where Eα =
∞∑
k=0

zk

Γ(kα+ 1) is the Mittag-Leffler function.
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For a positive number σ, we denote by Cσ the space C([−σ, 0],Rd). Also, we denote
by

‖x− y‖Cσ = sup
s∈[−σ,0]

‖x− y‖

the metric on the space Cσ. Let x(·) ∈ C([−σ,∞),Rd) . Then, for each t ∈ [0,∞)we
denote by xt the element of Cσ defined by xt(s) = x(t+ s) for s ∈ [−σ, 0].

3. MAIN RESULTS

In this section, we consider the fractional random differential equations with delay
as follows :




Dαx(t, ω) [0,a], P−a.e.= fω(t, xt),
x(t, ω) [−σ,0]= ϕ(t, ω).

(3.1)

where x0 : Ω→ Rd is a random vector, Dαx is the Caputo fractional derivative of x
with respect to the variable t, and f : Ω× [0, a]× Cσ → Rd is a given function.
Lemma 3.1. Let a (λ× P) - measurable function x : [−σ, a]× Ω→ Rd be a sample
path Lebesgue integrable on [−σ, a]. Then x(t, ω) is a sample solution of (3.1) if and
only if x(·, ω) is a continuous on [−σ, a] for P−a.e. ω ∈ Ω and it satisfies the following
random integral equation:

x(t, ω) [−σ,0]= ϕ(t, ω),

x(t, ω) [0,a], P−a.e.= ϕ(0, ω) + 1
Γ(α)

t∫

0

fω(s, xs)
(t− s)1−α ds. (3.2)

We shall consider the fractional random differential equations with delay (3.1)
assuming that the following assumptions are satisfied.
(f1) The mapping fω(·, ·) : [0, a]× Cσ → Rd are measurable and continuous for each

ω ∈ Ω.
(f2) There exists a Carathéodory function L : [0, a]× Ω→ Rd such that

‖fω(t,Φ)− fω(t,Ψ)‖ ≤ L(t, ω) ‖Φ−Ψ‖Cσ
for every t ∈ [0, a], Φ,Ψ ∈ Cσ and P− a.e. ω ∈ Ω.

(f3) There exists a non-negative constant M such that

‖fω(t,Φ)‖ ≤M

for every t ∈ [0, a], Φ ∈ Cσ and P− a.e. ω ∈ Ω.
Theorem 3.2. Let f : Ω× [0, a]× Cσ → Rd satisfy the assumptions (f1)–(f2). Then
the fractional random differential equations with delay (3.1) has a unique solution on
[0, a].
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Proof. To prove the theorem we apply the method of successive approximations. So, we
define the functions xn : [−σ, a]→ Rd, n = 0, 1, 2, 3, . . . as follows: for every t ∈ [0, a],
every ω ∈ Ω let us put

x0(t, ω) =
{
ϕ(t, ω) for t ∈ [−σ, 0],
ϕ(0, ω) for t ∈ [0, a].

(3.3)

and

xn(t, ω) =





ϕ(t, ω) for t ∈ [−σ, 0],

ϕ(0, ω) + 1
Γ(α)

t∫
0

fω(s, xn−1
s )

(t− s)1−α ds for t ∈ [0, a].
(3.4)

For n = 1 and every t ∈ [0, a], every ω ∈ Ω, we have

∥∥x1(t, ω)− x0(t, ω)
∥∥ ≤ 1

Γ(α)

t∫

0

‖fω(s, x0(ω))‖
(t− s)1−α ds

≤ M

Γ(α)

t∫

0

ds

(t− s)1−α ≤
Mtα

Γ(1 + α) ≤
Maα

Γ(1 + α) <∞. (3.5)

In particular,

∥∥x2(t, ω)− x1(t, ω)
∥∥ ≤ 1

Γ(α)

t∫

0

∥∥fω(s, x1
s)− fω(s, x0(ω))

∥∥
(t− s)1−α ds

= L̂(ω)
Γ(α)

t∫

0

∥∥x1
s(·, ω))− x0(·, ω)

∥∥
Cσ

(t− s)1−α ds

= L̂(ω)
Γ(α)

t∫

0

1
(t− s)1−α sup

s∈[−σ,0]

∥∥x1(r, ω))− x0(r, ω)
∥∥ ds

≤ L̂(ω)M
Γ(α)Γ(1 + α)

t∫

0

sα

(t− s)1−α ds ≤
L̂(ω)M

Γ(1 + 2α) t
2α

≤ L̂(ω)M
Γ(1 + 2α)a

2α, t ∈ [0, a],

where L̂(ω) = sup
t∈[0,a]

L(t, ω).

Further, if we assume that

∥∥xn(t, ω)− xn−1(t, ω)
∥∥ ≤ M [L̂(ω)t]nα

Γ(1 + nα) ≤
M̂ [L(ω)a]nα
Γ(1 + nα) , t ∈ [0, a],
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then we have

∥∥xn+1(t, ω)− xn(t, ω)
∥∥ ≤ L̂(ω)

Γ(α)

t∫

0

M [L̂(ω)s]nα
Γ(1 + nα) ds

≤ M [L̂(ω)t](n+1)α

Γ(1 + (n+ 1)α) ≤
M [L̂(ω)a](n+1)α

Γ(1 + (n+ 1)α) (3.6)

for every t ∈ [0, a] and P− a.e. ω ∈ Ω.
For every n = 0, 1, 2, . . ., the functions xn(·, ω) : [−σ, a] → Rd are continuous on

[−σ, a] for every ω ∈ Ω. Indeed, since ϕ ∈ Cσ, x0(t, ω) is continuous on [−σ, a] for
every ω ∈ Ω. Next, we assume that xk(·, ω) , k = 0, 1, 2, . . . , n − 1, are continuous
on [−σ, a] for every ω ∈ Ω. Then for t ∈ [−σ, a] and h > 0 small enough such that
t+ h ∈ (0, a] we have

‖xn(t+ h, ω)− xn(t, ω)‖ =

∥∥∥∥∥∥
1

Γ(α)

t+h∫

0

fω(s, xn−1
s )

(t+ h− s)1−α ds−
1

Γ(α)

t∫

0

fω(s, xn−1
s )

(t− s)1−α

∥∥∥∥∥∥
ds

≤ 1
Γ(α)

t∫

0

∣∣∣ 1
(t+ h− s)1−α −

1
(t− s)1−α

∣∣∣
∥∥fω(s, xn−1

s )
∥∥ ds

+ 1
Γ(α)

t+h∫

t

1
(t+ h− s)1−α

∥∥fω(s, xn−1
s )

∥∥ ds. (3.7)

On the other hand, by assumptions (f2)-(f3) we have
∥∥fω(t, xn−1

t )
∥∥ ≤

∥∥fω(t, xn−1
t )− fω(t, x0

t )
∥∥+

∥∥fω(t, x0
t )
∥∥

≤M + L̂(ω)
∥∥xn−1

t (·, ω)− x0
t (·, ω)

∥∥
Cσ

= M + L̂(ω) sup
r∈[−σ,0]

∥∥xn−1
t (r, ω)− x0

t (r, ω)
∥∥

= M + L̂(ω) sup
r∈[−σ,0]

∥∥xn−1(t+ r, ω)− x0(t+ r, ω)
∥∥

= M + L̂(ω) sup
s∈[t−σ,t]

∥∥xn−1(s, ω)− x0(s, ω)
∥∥

≤M + L̂(ω)
Γ(α)

t∫

0

1
(t− s)1−α sup

γ∈[0,s]

∥∥fω(γ, xn−2(γ, ω))
∥∥ ds.

For every n ≥ 1, every t ∈ [0, a] and every ω ∈ Ω, we get

sup
t∈[0,a]

∥∥fω(t, xn−1
t )

∥∥ ≤M + L̂(ω)
Γ(α)

t∫

0

1
(t− s)1−α sup

γ∈[0,s]

∥∥fω(γ, xn−2(γ, ω))
∥∥ ds. (3.8)
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Using Lemma 4.1 of [24] and (3.8), we obtain
∥∥fω(t, xn−1

t )
∥∥ ≤MEα(L̂(ω)aα). (3.9)

From (3.7) and (3.9) we get

‖xn(t+ h, ω)− xn(t, ω)‖ ≤MEα(L̂(ω)aα)
t∫

0

∣∣∣ 1
(t+ h− s)1−α −

1
(t− s)1−α

∣∣∣ds

+MEα(L̂(ω)aα)
t+h∫

t

1
(t− s)1−α ds

≤ MEα(L̂(ω)aα)
(
2hα + |(t+ h)α − tα|

)

Γ(1 + α)
P.a.e−→ 0 as h→ 0+.

Similarly, for t ∈ [0, a] and h > 0 small enough such that t− h ∈ [0, a) we obtain that
‖xn(t+ h, ω)− xn(t, ω)‖ P.a.e→ 0 as h→ 0+. Therefore, for n = 0, 1, 2, . . . the function
xn(·, ω) : [−σ, a] × Ω → Rd is continuous on [0, a] for every ω ∈ Ω. Since ϕ ∈ Cσ is
a random variable and for t ∈ [0, a], the mapping ω 7→

∫ t
0 fω(s, xn−1

s )ds are measurable
for n = 0, 1, 2, . . .. From the assumptions (f1) and (f2), it follows that xn(·, ·) are
Carathéodory functions.

Now for any n = 0, 1, 2, . . . and t ∈ [−σ, 0] we shall show that the sequence {x(t, ω)}
is a Cauchy sequence uniformly on the variable t with P− a.e. and then {xn(·, ω)} is
uniformly convergent for all ω ∈ Ω. For n > m ≥ 0, from (3.6) we have

sup
t∈[0,a]

‖xn(t, ω)− xm(t, ω)‖ ≤
n∑

k=m
sup
t∈[0,a]

∥∥xk+1(t, ω)− xk(t, ω)
∥∥

≤M
n∑

k=m

[L̂(ω)a](k+1)α

Γ(1 + (k + 1)α) . (3.10)

On the other hand, by the inequality,

Γ((k + 1)α) ≥ k!α2kΓk+1(α), k ≥ 0,

it follows that

[L̂(ω)a](k+1)α

Γ(1 + (k + 1)α) ≤
[L̂(ω)a](k+1)α

(k + 1)!α2k+1Γk+1(α) = α

(k + 1)!

[ [L̂(ω)a]α
αΓ(1 + α)

]k+1
. (3.11)

From (3.10) and (3.11) we get

sup
t∈[0,a]

‖xn(t, ω)− xm(t, ω)‖ ≤ αM
n∑

k=m

1
(k + 1)!

[ [L̂(ω)a]α
αΓ(1 + α)

]k+1
.
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The convergence of the series
∑∞
k=0

1
k!

[
[L̂(ω)a]α
αΓ(1+α)

]k
implies that for any ε > 0 we find

n0 ∈ N large enough such that for n,m ≥ n0,

sup
t∈[0,a]

‖xn(t, ω)− xm(t, ω)‖ ≤ ε. (3.12)

Therefore, the sequence xn(·, ω) is uniformly convergent on [0, a] for all ω ∈ Ω. For
ω ∈ Ω denote its limit by x̂(·, ω). Define x : [−σ, a] × Ω → Rd by x(t, ω) = ϕ(t, ω)
for t ∈ [−σ, 0] and x(t, ω) = x̂(t, ω) for t ∈ [0, a]. Since ϕ ∈ Cσ is a random variable
and ‖xn(t, ω)− x(t, ω)‖ P.a.e→ 0 as n→∞ for t ∈ [0, a], we see t ∈ [−σ, a] and x(·, ω) is
a measurable function. Hence, the function x : [−σ, a]× Ω → Rd is a Carathéodory
function. We shall show that x(·, ·) is a solution of the fractional random integral
equation (3.2). Let n ∈ N. For any ε > 0, there exits n0 large enough such that for
every n ≥ n0 we derive

‖fω(t, xnt )− fω(t, xt)‖ ≤ L(t, ω) ‖xnt (·, ω)− xt(·, ω)‖Cσ
= L̂(ω) sup

r∈[−σ,0]
‖xnt (r, ω)− xt(r, ω)‖

= L̂(ω) sup
r∈[−σ,0]

‖xn(t+ r, ω)− x(t+ r, ω)‖

= L̂(ω) sup
γ∈[t−σ,t]

‖xn(γ, ω)− x(γ, ω)‖

= L̂(ω) sup
γ∈[0,t]

‖xn(γ, ω)− x(γ, ω)‖ ≤ ε

for any t ∈ [0, a], because the sequence {xn(·, ω)} is uniformly convergent on [0, a] for
all ω ∈ Ω. Thus, for any t ∈ [0, a] we have
∥∥∥∥∥∥

1
Γ(α)

t∫

0

fω(s, xns )
(t− s)1−α ds−

1
Γ(α)

t∫

0

fω(s, xs)
(t− s)1−α ds

∥∥∥∥∥∥
≤ 1

Γ(α)

t∫

0

‖fω(s, xns )− fω(s, xs)‖
(t− s)1−α ds

≤ L̂(ω)
Γ(α)

t∫

0

1
(t− s)1−α sup

γ∈[0,s]
‖xn(γ, ω)− x(γ, ω)‖ ds

≤ L̂(ω)aα
Γ(1 + α) sup

γ∈[0,t]
‖xn(γ, ω)− x(γ, ω)‖ .

By the Lebesgue dominated convergence theorem, we infer that
∥∥∥∥∥∥

1
Γ(α)

t∫

0

fω(s, xns )
(t− s)1−α ds−

1
Γ(α)

t∫

0

fω(s, xs)
(t− s)1−α ds

∥∥∥∥∥∥
P.a.e−→ 0,

as n→∞, for all t ∈ [0, a] and ω ∈ Ω.
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Consequently, we have
∥∥∥∥∥∥
x(t, ω)− ϕ(0, ω)− 1

Γ(α)

t∫

0

fω(s, xs)
(t− s)1−α ds

∥∥∥∥∥∥

≤ ‖xn(t, ω)− x(t, ω)‖+

∥∥∥∥∥∥
xn(t, ω)− ϕ(0, ω)− 1

Γ(α)

t∫

0

fω(s, xn−1
s )

(t− s)1−α ds

∥∥∥∥∥∥

+

∥∥∥∥∥∥
1

Γ(α)

t∫

0

fω(s, xn−1
s )

(t− s)1−α ds−
1

Γ(α)

t∫

0

fω(s, xs)
(t− s)1−α ds

∥∥∥∥∥∥
.

Thus, in view of the two previous convergences and the fact that the second term of
the right-hand side is equal to zero, one obtains

x(t, ω) = ϕ(0, ω) + 1
Γ(α)

t∫

0

fω(s, xs)
(t− s)1−α ds

for all t ∈ [0, a] and ω ∈ Ω. Therefore, x(t, ω) is a solution of problem (3.1).
For the uniqueness of the solution, let us assume that x, y : [−σ, a]× Ω→ Rd are

two Carathéodory functions which are solutions of the problem (3.1). Then we have

‖x(t, ω)− y(t, ω)‖ =

∥∥∥∥∥∥
1

Γ(α)

t∫

0

fω(s, xs)
(t− s)1−α ds−

1
Γ(α)

t∫

0

fω(s, ys)
(t− s)1−α ds

∥∥∥∥∥∥

≤ 1
Γ(α)

t∫

0

‖fω(s, xs)− fω(s, ys)‖
(t− s)1−α ds

≤ L̂(ω)
Γ(α)

t∫

0

‖xs(·, ω)− ys(·, ω)‖Cσ
(t− s)1−α ds

= L̂(ω)
Γ(α)

t∫

0

1
(t− s)1−α sup

r∈[−σ,0]
‖xs(r, ω)− ys(r, ω)‖ ds

= L̂(ω)
Γ(α)

t∫

0

1
(t− s)1−α sup

r∈[−σ,0]
‖x(s+ r, ω)− y(s+ r, ω)‖ ds

= L̂(ω)
Γ(α)

t∫

0

1
(t− s)1−α sup

γ∈[s−σ,s]
‖x(γ, ω)− y(γ, ω)‖ ds. (3.13)

If we take
ξ(s, ω) = sup

γ∈[s−σ,s]
‖x(γ, ω)− y(γ, ω)‖
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for all s ∈ [0, t] and ω ∈ Ω, then from (3.13) we see that

ξ(t, ω) ≤ L̂(ω)
Γ(α)

t∫

0

1
(t− s)1−α ξ(s, ω)ds.

Applying Lemma 2.1 we obtain that
‖x(t, ω)− y(t, ω)‖ = 0,

for all t ∈ [0, a] and ω ∈ Ω, which completes the proof.

The next two theorems present boundedness type results for the solutions of (3.1).
Theorem 3.3. Suppose that the function f : Ω × [0, a] × Cσ → Rd and ϕ, ϕ̂ ∈ Cσ
satisfy the assumptions as in Theorem 3.2. Then the solution x to the problem (3.1)
satisfies

‖x(t, ω)‖ ≤ ‖ϕ(0, ω)‖Eα
(Maα

Γ(α)

)

for all s ∈ [0, t] and ω ∈ Ω.
Proof. Since for all t ∈ [0, a] and ω ∈ Ω,

‖x(t, ω)‖ =

∥∥∥∥∥∥
ϕ(0, ω) + 1

Γ(α)

t∫

0

fω(s, xs)
(t− s)1−α ds

∥∥∥∥∥∥

≤ ‖ϕ(0, ω)‖+ M

Γ(α)

t∫

0

‖xs(·, ω)‖Cσ
(t− s)1−α ds

≤ ‖ϕ(0, ω)‖+ M

Γ(α)

t∫

0

1
(t− s)1−α sup

r∈[−σ,0]
‖x(s+ r, ω)‖ ds

≤ ‖ϕ(0, ω)‖+ M

Γ(α)

t∫

0

1
(t− s)1−α sup

γ∈[s−σ,s]
‖x(γ, ω)‖ ds.

Applying Lemma 2.1, for all s ∈ [0, t] and ω ∈ Ω, we obtain that

‖x(t, ω)‖ ≤ ‖ϕ(0, ω)‖Eα
(Maα

Γ(α)

)
,

where Eα(z) is the Mittag- Leffler function. This proof is completed.

Theorem 3.4. Suppose that the function f : Ω× [0, a]×Cσ → Rd and ϕ ∈ Cσ satisfy
the assumptions as in Theorem 3.2. Then the solution x and y are solutions of the
problem (3.1) with x(0, ω) = ϕ(0, ω) and y(0, ω) = ϕ̂(0, ω) for t ∈ [−σ, 0], satisfies

‖x(t, ω)− y(t, ω)‖ ≤ ‖ϕ− ϕ̂‖Eα
( L̂(ω)aα

Γ(α)

)

for all s ∈ [0, t] and ω ∈ Ω.
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Proof. Note that for all t ∈ [0, a] and ω ∈ Ω,

‖x(t, ω)− y(t, ω)‖

=

∥∥∥∥∥∥
ϕ(0, ω) + 1

Γ(α)

t∫

0

fω(s, xs)
(t− s)1−α ds− ϕ̂(0, ω)− 1

Γ(α)

t∫

0

fω(s, ys)
(t− s)1−α ds

∥∥∥∥∥∥

≤ ‖ϕ(0, ω)− ϕ̂(0, ω)‖Cσ + L̂(ω)
Γ(α)

t∫

0

‖xs(·, ω)− ys(·, ω)‖Cσ
(t− s)1−α ds

≤ ‖ϕ(0, ω)− ϕ̂(0, ω)‖Cσ + L̂(ω)
Γ(α)

t∫

0

1
(t− s)1−α sup

r∈[−σ,0]
‖x(s+ r, ω)− y(s+ r, ω)‖ ds

≤ ‖ϕ− ϕ̂‖+ L̂(ω)
Γ(α)

t∫

0

1
(t− s)1−α sup

γ∈[s−σ,s]
‖x(γ, ω)− y(γ, ω)‖ ds.

Applying Lemma 2.1, for all s ∈ [0, t] and ω ∈ Ω, we obtain that

‖x(t, ω)− y(t, ω)‖ ≤ ‖ϕ− ϕ̂‖Eα
( L̂(ω)aα

Γ(α)

)
,

where Eα(z) is the Mittag- Leffler function. This proof is complete.

4. ILLUSTRATIVE EXAMPLES

In this section we give some examples to illustrate the usefulness of our main
results.

Example 4.1. Let us consider the class of delay random fractional differential equa-
tions with distributed delay. For m ∈ N and 0 < σ1 < σ2 < . . . < σm < σ. Consider
the random fractional differential equations with delay as follows:

x(t, ω) = ϕ(t, ω) for t ∈ [−σ, 0],

Dαx(t, ω) =
0∫

−σ

g0,ω(s, x(t+ s, ω))ds+
m∑

i=1
gi,ω(t, x(t− σi, ω)) for t ∈ [0, a], (4.1)

where gi : Ω × [0, a] × Cσ → Rd, i = 0, 1, 2, . . . ,m are some random mapping, Ω is
a complete probability space and Cσ is the space C([−σ, 0]× Ω,Rd).

Assume that gi,ω : [0, a]× Cσ → Rd satisfy the following assumptions:

(g1) The mapping gi,ω(·, ·) : [0, a] × Cσ → Rd are measurable and continuous, for
every (t0, ϕ0) ∈ [0, a]× Cσ, each ω ∈ Ω;
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(g2) There exists a Carathéodory function Li : [0, a]× Ω→ Rd such that

‖gi,ω(t,Φ)− gi,ω(t,Ψ)‖ ≤ Li(t, ω) ‖Φ−Ψ‖Cσ
for i = 0, 1, 2, . . . ,m, every t ∈ [0, a], Φ,Ψ ∈ Cσ and P− a.e. ω ∈ Ω;

(g3) There exists some non-negative constants Mi such that

‖gi,ω(t,Φ)‖ ≤Mi

for i = 0, 1, 2, . . . ,m, every t ∈ [0, a], Φ ∈ Cσ and P− a.e. ω ∈ Ω.

Observe that, if gi,ω : [0, a] × Cσ → Rd satisfy the following assumptions
(g1)–(g3), then the problem (4.1) has a unique solution. Indeed, let the mapping
g : Ω× [0, b]× Cσ → Rd given by

gω(t, ϕ) =
0∫

−σ

g0,ω(τ, ϕ(τ))dτ +
m∑

i=1
gi,ω(t, ϕ(−σi))

satisfies assumptions (f1), (f2) and (f3). From assumption (g1) one can infer that
assumption (f1) is satisfied. And by assumption (g2), we have

‖gω(t, ϕ)− gω(t, ψ)‖ ≤
0∫

−σ

‖g0,ω(τ, ϕ(τ))− g0,ω(τ, ψ(τ))‖ dτ

+
m∑

i=1
‖gi,ω(t, ϕ(−σi))− gi,ω(t, ψ(−σi))‖

≤ L(t, ω) ‖ϕ− ψ‖Cα ,

where

L(t, ω) = σ sup
τ∈[−σ,0]

L0(τ, ω) +
m∑

i=1
Li(t, ω).

Hence, g satisfies (f2). Moreover, by assumption (g3), we get

‖gω(t, ϕ)‖ ≤
0∫

−σ

‖g0,ω(τ, ϕ(τ))‖ dτ +
m∑

i=1
‖gi,ω(t, ϕ(−σi)‖ ≤M,

where M = σM0 +
m∑
i=1

Mi. So, g satisfies (f3).

Example 4.2. In the classical population models, it is considered that the birth rate
changes immediately as soon as a change in the number of individuals is produced.
However, the members of the population must reach a certain degree of development
to give birth to new individuals and this suggests introducing a delay term into the
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system. Now, let (Ω,A,P) be complete probability space measure space, we consider
a random time-delay Malthusian model as follows:

x(t, ω) = ϕ(t, ω) = (1 + ω2)t, −1 ≤ t ≤ 0,

Dαx(t, ω) = tω2

1 + ω2x(t− 1, ω), t ≥ 0, (4.2)

where ω symbolizes a random factor and x : [−1,∞) × Ω → R is the population at
time t.

Let us the mapping fω(·, ·) : [0,∞)× Cσ → R given by

fω(t, xt) = tω2

1 + ω2x(t− 1, ω) for all ω ∈ Ω.

It is easy to check that fω(t, xt) satisfies the assumption (f2)–(f3). Indeed, we have

(i) for all (t, ω) ∈ [0, a]× Ω,

∣∣fω(t, xt)− fω(t, yt)
∣∣ =

∣∣∣ tω2

1 + ω2x(t− 1, ω)
∣∣∣ ≤

∣∣∣ tω2

1 + ω2

∣∣x(t− 1, ω)− y(t− 1, ω)
∣∣

= t sup
r∈[−1,0]

∣∣x(r, ω)− y(r, ω)
∣∣ = t

∣∣x− y
∣∣
Cσ

i.e. fω(·, ·) satisfies the assumption (f2), where L(t, ω) = t.
(ii) for all (t, ω) ∈ [0, a]× Ω,

∣∣fω(t, xt)
∣∣ =

∣∣∣ tω2

1 + ω2x(t− 1, ω)
∣∣∣ ≤

∣∣∣ tω2

1 + ω2

∣∣x(t− 1, ω)
∣∣

≤ t sup
r∈[−1,0]

∣∣x(r, ω)
∣∣ ≤ a2(1 + ω2).

i.e. fω(·, ·) satisfies the assumption (f3), where M = a2(1 + ω2).

Hence, by Theorem 3.2, the problem (4.2) has a random solution defined on [−1,∞).
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