PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robustness and portability of machine tool thermal error compensation model based on control of participating thermal sources

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal errors caused by the influence of internal and external heat sources in machine tool structure can cause more than 50% of total machine tool inaccuracy. Therefore, research on thermal behavior of machine tool structures is crucial for successful manufacturing. This paper provides an insight into the modeling of highly nonlinear machine tool thermal errors using thermal transfer functions (TTF). The method is dynamic (uses machine tool thermal history) and its modeling and calculation speed is suitable for real-time applications. The method does not require interventions into the machine tool structure, uses very few additional gauges and solves separately each influence participating on thermal error. The paper focuses on the development of a robust thermal model sensitive to various machine tool thermal behavior nonlinearities with the help of minimum input information. Model was applied on real machine tool (portal milling centre) and was verified within a complicated electro-spindle revolution spectrum. Moreover, the said compensation model was applied on another machine tool to prove its robustness and portability among machines of the same type set and the results of the TTF model were compared with a model obtained via multiple linear regression (MLR) as a case study.
Słowa kluczowe
Rocznik
Strony
24--36
Opis fizyczny
Bibliogr. 33 poz., tab., rys.
Twórcy
autor
  • Research Center of Manufacturing Technology of the Czech Technical University in Prague, Horská 3, 12800, Prague 2, Czech Republic
autor
  • Research Center of Manufacturing Technology of the Czech Technical University in Prague, Horská 3, 12800, Prague 2, Czech Republic
autor
  • Research Center of Manufacturing Technology of the Czech Technical University in Prague, Horská 3, 12800, Prague 2, Czech Republic
autor
  • Research Center of Manufacturing Technology of the Czech Technical University in Prague, Horská 3, 12800, Prague 2, Czech Republic
Bibliografia
  • [1] BRECHER C., et al., 2006, Messtechnische untersuchung von prozess und maschine, beurteilung und abnahme von werkzeugmaschinen (ab 1960). In: Weck M (ed) 100 Jahre Produktionstechnik. Springer, Berlin, 437-448.
  • [2] BRYAN, J., 1990, International status of thermal error research. Annals of the CIRP, 39/2, 645-656.
  • [3] WECK M., MCKEOWN P., BONSE R., HERBST U., 1995, Reduction and compensation of thermal errors in machine tools, Annals of the CIRP, 44/2, 589-598.
  • [4] JEDRZEJEWSKI J. et al., 2008, Precise Model of HSC Machining Centre for Aerospace Parts Milling. Journal of Mechanical Engineering, 8/3, 29-41.
  • [5] MAYER, J. et al., 2012, Thermal issues in machine tools. Annals of the CIRP, 2012, 61/2.
  • [6] ISO 10791-10, 2007, Test conditions for machining centres – Part 10: Evaluation of Thermal Distortion, Genf, Switzerland.
  • [7] ISO 13041-8, 2004, Test conditions for numerically controlled turning machines and turning centres – Part 8: evaluation of thermal distortions, genf, switzerland.
  • [8] ISO 230-3, 2007, Test code for machine tools – part 3: determination of thermal effects, genf, Switzerland.
  • [9] RAMESH R., MANNAN M.A., POO A.N., 2000, Error compensation in machine tools - a review, Part II: thermal errors, in International Journal of Machine Tools & Manufacturing, 40, 1257 -1284.
  • [10] MEO F., et al., 2008, Advanced hybrid mechatronic materials for ultra precise and high performance machining system design. Innovative production machines and systems, D.T. Pham, E.E. Eldukhri and A.J. Soroka (eds), MEC. Cardiff University, UK.
  • [11] UHLMANN E. et al., 2008, Compensation of thermal deformations at machine tools using adaptronic CRPStructures. In: Proceedings of 41st CIRP Conference on Manufacturing Systems: Manufacturing Systems and Techniques for the New Front, 183-186.
  • [12] JEDRZEJEWSKI, J., 1998, Effect of thermal contact resistance on thermal behaviour of the spindle, Int. J. Mach. Tools Manufacturing. Vol. 28, No. 4, 409-416.
  • [13] BARTA P. et al. 2007, Thermal transfer function based control of a machine tool cooling system, In: Proceedings of the topical meeting: Thermal Effects in Precision System. Maastricht, Netherlands, 18-19.
  • [14] MARES M. et al., 2011, Control and detailed modeling of machine tool highly nonlinear thermal behavior Based on thermal transfer functions. World Academy of Science, Engineering and Technology, Vol. 59, 2735-2740, ISSN 2010-376X.
  • [15] MITSUISHI, M. et al., 2001, Development of an intelligent high-speed machining centre. annals of the CIRP, 2001, 50/1, 275-280.
  • [16] ZHAO Y. et al., 2010, Optimization and temperature mapping of an ultra-high thermal stability environmental enclosure. Precision Engineering, 34, 164-170.
  • [17] DU, Z.C. et al., 2002, Modelling approach of regression orthogonal experiment design for the thermal error compensation of a CNC turning center. J. Mater. Process Technol, 129, 619-623.
  • [18] POSTLETHWAITE S. R., 1998, The use of thermal imaging, temperature and distortion models for machine Tool thermal error correction. In: Proceedings of the Institution of Mechanical Engineers, Vol. 212, 671-679. ISSN 09544070.
  • [19] FRASER S. et al., 1999, Modelling, identification and control of thermal deformation of machine tool Structures: Part 4-A Multi-Variable Closed-Loop Control System. Trans. ASME, Manufacturing Science and Engineering, 120, 509-516.
  • [20] MIZE C.D. et al., 2000, Neural network thermal error compensation of a machining center. In: Precision Engineering, 24, 338-34. ISSN 01416359.
  • [21] MITSUISHI M. et al., 1994, Active thermal deformation compensation based on internal monitoring and a neural network. In: Advancement of intelligent production, 215-220.
  • [22] LEE J.H. et al., 2001, Thermal error modeling of a horizontal machining center using fuzzy logic strategy. J Manuf. Process, 3, 120-127.
  • [23] WANG K.C., et al., 2006, Thermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference system. Int. J. Ser. C. Mech. Syst. Mach Elem Manuf., Vol. 49, 1179–1187.
  • [24] FRASER S., ATTIA M.H., OSMAN M.O.M., 2004, Control-Oriented Modeling of Thermal Deformation of Machine Tools Based on Inverse Solution of Time-Variant Thermal Loads with Delayed Response, Trans. ASME, J. of Manufacturing Science and Engineering, 286-296
  • [25] MORIWAKI T. et al., 1998, Analysis of thermal deformation of an ultra precision air spindle system. In: CIRP Annals, 47, 283-286. ISSN 00078506.
  • [26] BRECHER C. et al., 2004, Compensation of thermo-elastic machine tool deformation based on control internal data. In: CIRP Annals, 53, 299-304. ISSN 00078506.
  • [27] HOREJS O. et al., 2010, Compensation of machine tool thermal errors based on transfer functions. In: MM Science Journal, 162-165. ISSN 18031269.
  • [28] ATTIA M.H., FRASER S., 1999, A generalized modeling methodology for optimized real-time compensation of thermal deformation of machine tool and cmm structures, Int. J. Machine Tools and Manuf. Design, Research and Applications, 39, 1001-1016
  • [29] MARES M., HOREJS O., KOHUT P., HORNYCH J., BÁRTA P., 2010, Application of mechatronic approach to modelling, identification and control of machine tool thermal errors, in proceedings of the 29th IASTED International Conference: Modelling, Identification and Control (MIC 2010), Innsbruck, Austria, 284-290.
  • [30] HOREJS O., et al., 2012, Advanced compensation of thermally induced displacement of machine tools based on transfer functions, MM Science Journal, Special Issue | MATAR 2012, ISSN 1803-1269 (print), ISSN 1805-0476 (on-line).
  • [31] LJUNG L., 2009, System identification toolbox 7 User’s guide, www.mathworks.com (The MathWorks).
  • [32] MARES M., BARTA P., 2008, Mechatronic approach in modelling, identification and control of thermal deformation of quill, MM Science Journal, 10, 25–29.
  • [33] URIARTE L., et al., 2008, Thermal modal analysis, Tutorial EUSPEN, version, 8, 1-38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dab29cdd-a7a9-4690-9129-4567c16b2208
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.