PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Research of Nitrogen Oxides Concentrations in Exhaust Gas of Compression Ignition Engine Fuelled with Alternative Fuel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research was divided into two stages. The first stage of work was to perform empirical research using the Perkins engine. The test stand was equipped with an exhaust gas composition analyzer, a pressure sensor enabling measurement of pressure in the engine cylinder and a crankshaft position sensor. This stage of research was realized for diesel and UCOME fuel. The second stage was a simulation test. The Zeldowicz model of thermal NO formation in compression ignition engines was used for calculations. Theoretical methods were compared with the results obtained in empirical tests. It was found that the most similar results of tests when powering the engine with UCOME fuel were obtained thanks to the GRI-MECH 3.0 (GM3) method. On the basis of this method, coefficients of the reaction rate of NO formation in an internal combustion engine, which is powered by the higher generation alternative fuel (Sikora et al. (S) method) were developed. For the calculation tests the values of the experimentally determined pressures were used. The proposed method can be used in simulation tests of a diesel engine running on FAME fuels with similar physical and chemical properties as the UCOME fuel. This will significantly reduce the costs of such tests, as some empirical tests can be eliminated by the conclusions of the simulation tests.
Twórcy
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
Bibliografia
  • 1. Choudhary AK., Chelladurai H., Kannan C. Performance analysis of bioethanol (Water Hyacinth) on diesel engine. International Journal of Green Energy. 2016; 13: 1369–1379.
  • 2. Bielaszyc P., Gandyka M., Joseph W., et al. Ethanol as an automotive fuel-a review. Combustion Engines. 2016; 166: 39–45.
  • 3. Kruczyński S., Gis W., Orliński P., et al. Influence of the use of ethanol fuel on selected parameters of the gasoline engine. IOP Conference Series: Materials Science and Engineering. 2018; 421: 042041.
  • 4. Heywood JB. Internal combustion engine fundamentals. McGraw-Hill, 1988.
  • 5. Liati A., Schreiber D., Alpert PA., et al. Aircraft soot from conventional fuels and biofuels during ground idle and climb-out conditions: Electron microscopy and X-ray micro-spectroscopy. Environmental Pollution. 2019; 658–667.
  • 6. Owczuk M., Matuszewska A., Wojs MK., et al. The effect of fuel type used in the spark-ignition engine on the chemical composition of exhaust gases. Przemysl Chemiczny. 2018; 97: 1910–1915.
  • 7. Lasocki J., Bednarski M., Sikora M. Simulation of ammonia combustion in dual-fuel compressionignition engine. IOP Conference Series: Earth and Environmental Science. 2019; 214: 012081.
  • 8. Kruczyński S., Orliński P., Biernat K. Camelina oil as a biofuel for diesel engines. Przemysł Chemiczny. 2012; 91: 111–114.
  • 9. Chuah LF., Aziz ARA., Yusup S., et al. Performance and emission of diesel engine fuelled by waste cooking oil methyl ester derived from palm olein using hydrodynamic cavitation. Clean Technologies and Environmental Policy. 2015; 17: 2229–2241.
  • 10. Valente OS., Pasa VMD., Belchior CRP., et al. Physical–chemical properties of waste cooking oil biodiesel and castor oil biodiesel blends. Fuel. 2011; 90: 1700–1702.
  • 11. Sankar G., Ganesh B., Karu R. Experimental investigations on direct injection diesel engines using grape seed oil methyl ester with different bowl geometries. International Journal of Green Energy. 2019; 16: 590–597.
  • 12. Bednarski M., Orliński P., Wojs MK., et al. Evaluation of methods for determining the combustion ignition delay in a diesel engine powered by liquid biofuel. Journal of the Energy Institute. 2018.
  • 13. Bednarski M., Samoilenko D., Orliński P., et al. Evaluation of the diesel engine parameters after regeneration of its fuel delivery system. Transport Means Proceedings of the International Conference; 2017.
  • 14. Flynn PF., Hunter GL., Farrel L., et al. The inevitability of engine-out NOx emissions from spark-ignited and diesel engines. Proceedings of the Combustion Institute. 2000; 28: 1211–1218.
  • 15. Brückner C., Kyrtatos P., Boulouchos K. NOx emissions in direct injection diesel engines: Part 2: model performance for conventional, prolonged ignition delay, and premixed charge compression ignition operating conditions. International Journal of Engine Research. 2018; 19: 528–541.
  • 16. Bueschke W., Wisłocki K., Pielecha I., et al. Influence of the distance between gas injector and intake valve on combustion indicators and NOx emission in dual fuel ci engine. Journal of Mechanical and Transport Engineering. 2017; 69: 5–13.
  • 17. Merker G., Otto F., Schwarz C., et al. Simulating combustion and pollutant formation for enginedevelopment. Springer, 2006.
  • 18. Sindhu R., Amba Prasad Rao G., Madhu Murthy K. Effective reduction of NOx emissions from diesel engine using split injections. Alexandria Engineering Journal. 2018; 57: 1379–1392.
  • 19. Kruczyński P., Orliński P., Kamela W., et al. Analysis of selected toxic components in the exhaust gases of a CI engine supplied with water-fuel emulsion. Polish Journal of Environmental Studies. 2018; 27: 129–136.
  • 20. Longhurst J. Air Pollution XXII: Twenty Second Conference on Modelling, Monitoring and Management of Air Pollution. 183.
  • 21. Krakowian K., Kamierczak A., Wdowikowska A. Modern diesel engines NOx particles emission. 2013.
  • 22. Martínez-Morales JD., Palacios E., Carrillo GAV. Modeling of internal combustion engine emissions by LOLIMOT algorithm. Procedia Technology. 2012; 3: 251–258.
  • 23. Kumar M., Tsujimura T., Suzuki Y. NOx model development and validation with diesel and hydrogen/diesel dual-fuel system on diesel engine. Energy. 2018; 145: 496–506.
  • 24. Luo Q he., Hu J Bin., Sun B gang., et al. Experimental investigation of combustion characteristics and NOx emission of a turbocharged hydrogen internal combustion engine. International Journal of Hydrogen Energy. 2019; 5573–5584.
  • 25. Ziółkowska M. Wpływ paliw estrowych na procesy utleniania oleju silnikowego w czasie eksploatacji. Nafta-Gaz. 2017; 73: 43–48.
  • 26. Kumar KV., Prasad VVS. Production and characterization of used cooking oil as an alternative fuel: optimization by response surface methodology. Mathematical Models in Engineering. 2018; 4: 18–28
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dab06c38-9620-4bda-bef7-99ba30943da5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.