PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lifetime Corrosion Loss of Bulk Carriers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyzes the total steel replacement due to corrosion degradation in four Handymax-class bulk carriers, based on corrosion measurements recorded throughout their operational lifespan. Each ship was divided into 11 lightship mass subgroups, enabling detailed examination of cumulative lifetime corrosion losses for both entire ships and individual subgroups. Utilizing similar ship data obtained from the shipyard, the study also provides estimations of the total steel weights of each of lightship subgroups. The findings offer valuable insights into the overall aging effects on ship structures, crucial for maintenance planning, structural integrity assessments, and recycling, especially from the perspective of sustainable shipping. Additionally, the estimated weights of lightship subgroups can serve as reference data for preliminary ship design, aiding in the estimation of lightship weights and potential steel loss due to corrosion.
Twórcy
  • University of Belgrade, Belgrade, Serbia
  • University of Donja Gorica, Podgorica, Montenegro
Bibliografia
  • [1] Ivošević Š., 2012. PhD Thesis, University of Montenegro, Maritime Faculty Kotor, Kotor, Montenegro.
  • [2] Ivošević Š., Meštrović R., Kovač N., 2019. Probabilistic estimates of corrosion rate of fuel tank structures of aging bulk carriers, International Journal of Naval Architecture and Ocean Engineering, 11(1): 165-177.
  • [3] Viner A.C., Tozer D.R, 1985. Influence of corrosion on ship structural performance, Hull New Construction Division No. 85/29, Lloyd’s Register of Shipping.
  • [4] Paik J.K., Thayamballi A.K., 2002. Ultimate strength of aging ships, Journal of Engineering for the Maritime Environment, 1(1): 57-77.
  • [5] Pollard R.R., 1991. Evaluation of corrosion damage in crude and product carriers, Report No. SMP-I, Department of Naval Architecture & Offshore Engineering, University of California, Berkeley.
  • [6] Yamamoto N., Ikegami K., 1996. A study on the degradation of coating and corrosion of ship’s hull based on the probabilistic approach, In: Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium (OMAE’96), 2: 159–166.
  • [7] Barbulescu A., Dumitriu C.S., 2023. Fractal Characterization of Brass Corrosion in Cavitation Field in Seawater, Sustainability, 15.
  • [8] Paik J.K., Kim S.K., Lee S.K., 1998. A probabilistic corrosion rate estimation model for longitudinal strength members of bulk carriers, Ocean Engineering, 25(10): 837–860.
  • [9] Zriouel W., Bentis A., Majid S., Hammouti B., Gmouh S., Umoren P.S., Umoren S.A., 2023. The Blue Tansy Essential Oil–Petra/Osiris/Molinspiration (POM) Analyses and Prediction of Its Corrosion Inhibition Performance Based on Chemical Composition, Sustainability, 15.
  • [10] Rodkina А., Ivanova O., Kramar V., Dushko V., Zhilenkov A., Chernyi S., Zinchenko A., 2022. Simulation and selection of a protection types in the design stage of ships and offshore structures, Brodogradnja, 73(2): 59-77.
  • [11] Ohyagi M., 1987. Statistical Survey on Wear of Ships ́ Structural Members, Nippon Kaiji Kyokai, Technical Bulletin, 5.
  • [12] Paik J.F., Brennan F., Carlsen C.A., Daley C., Garbatov Y., Ivanov L., Rizzo C., Simonsen B.C, Yamamoto N., Zhuang H. Z., 2006. Report of Committee V.6 Condition Assessment of Aging Ships, 16th International Ship and Offshore Structures Congress, 20-25 August 2006, Southampton, UK.
  • [13] Roberts S.E., Marlow P.B., 2002. Casualties in dry bulk shipping (1963–1996), Marine Policy, 26: 437–450.
  • [14] IMO, 2007. Bulk carrier casualty report, IMO, MSC 83/INF.6, 3 July 2007.
  • [15] Ivošević Š., Kovač N., Momčilović N., Vukelić G, 2021. Analysis of corrosion depth percentage on the inner bottom plates of aging bulk carriers with an aim to optimize corrosion margin, Brodogradnja, 72(3).
  • [16] Ivošević Š., Kovač N., Momčilović N., Vukelić G, 2022. Evaluation of the Corrosion Depth of Double Bottom Longitudinal Girder on Aging Bulk Carriers, Journal of Marine Science and Engineering, 10(10).
  • [17] Kovač N., Ivošević Š., Momčilović N., 2024. Corrosion-induced thickness diminution of an ageing bulk carrier, Brodogradnja, 75.
  • [18] Soares C.G., Garbatov Y., 1999. Reliability of maintained, corrosion protected plates subjected to non–linear corrosion and compressive loads. Marine Structures, 12(6): 425–445.
  • [19] Yamamoto N., Kumano A., Matoba M., 1994. Effect of corrosion and its protection on hull strength (2nd Report), Journal of the Society of Naval Architects of Japan, 176: 281-289.
  • [20] Paik J.K., Lee J.M., Park Y.I., Hwang J.S., Kim C.W., 2003. Time–variant ultimate longitudinal strength of corroded bulk carriers. Marine Structures, 16: 567–600.
  • [21] Melchers R.E., 1999. Corrosion uncertainty modelling for steel structures. Journal of Constructional Steel Research, 52: 3–19.
  • [22] Melchers R.E., 2003. Probabilistic Model for Marine Corrosion of Steel for Structural Reliability Assessment, Journal of Structural Engineering, 129(11): 1484–1493.
  • [23] Momčilović N., Ilić N., Kalajdžić M., Ivošević Š., Petrović A., 2023. Pitting and uniform corrosion effects on ultimate strength of a bulk carrier, Procedia Structural Integrity, 48.
  • [24] Momčilović N., Ilić N., Kalajdžić M., Ivošević Š, Petrović A., 2024. Effect of Corrosion-Induced Structural Degradation on the Ultimate Strength of a High-Tensile- Steel Ship Hull, Journal of Marine Science and Engineering, 12.
  • [25] Inal O. B., 2024. Decarbonization of shipping: Hydrogen and fuel cells legislation in the maritime industry, Brodogradnja, 75.
  • [26] Prados J. M., Fernandez I. A., Gomez M. R., Parga M. N., 2024. The decarbonisation of the maritime sector: Horizon 2050, Brodogradnja, 75.
  • [27] Grlj C. G., Degiuli N., Martić I., 2024. Experimental and numerical assessment of the effect of speed and loading conditions on the nominal wake of a containership, Brodogradnja, 75.
  • [28] IMO, 2018. MEPC. Resolution MEPC.308(73) - Guidelines on the Method of Calculation of the attained Energy Efficiency Design Index (EEDI) for new ships: IMO, 2018/10/26.
  • [29] IMO, 2012. ANNEX 4 - Resolution MEPC.210(63) - Adopted on 2 March 2012 - 2012 Guidelines for safe and environmentally sound ship recycling, International Maritime Organization, London, UK.
  • [30] IMO, 2017. Linkages between IMO's Technical Assistance Work and the 2030 Agenda for Sustainable Development, London, UK.
  • [31] Frančić V., Hasanspahić N., Mandušić M, Strabić M., 2023. Estimation of Tanker Ships’ Lightship Displacement Using Multiple Linear Regression and XGBoost Machine Learning, Journal of Marine Science and Engineering, 11.
  • [32] Aasen R., Bjorhovde S., 2010. Early stage weight and cog estimation using parametric formulas and regression on historical data, 69 Annual conference of Society of Allied Weight Engineers, Virginia, USA.
  • [33] Slapničar V., Zadro K, Ložar V., Ćatipović I, 2021. The lightship mass calculation model of a merchant ship by empirical methods, Pedagogika – Pedagogy, 93.
  • [34] Watson D.G.M., 1998. Practical Ship Design, Oxford, Elsevier Science Ltd.
  • [35] Schneekluth H., Bertram V., 1998. Ship Design for Efficiency and Economy. 2nd edition. Oxford: Butterworth-Heinemann.
  • [36] Papanikolaou A., 2014. Ship Design - Methodologies of Ship Design, Springer.
  • [37] Knapp S., Bijwaard G., Heij C., 2011. Estimated incident cost savings in shipping due to inspections. Accident Analysis and Prevention, 43: 1532–1539.
  • [38] Heij C., Knapp S., 2019. Shipping inspections, detentions, and incidents: an empirical analysis of risk dimensions, Maritime Policy & Management, 46(7): 866–883.
  • [39] Poggi L., Gaggero T., Gaiotti M., Ravina E., Rizzo C., 2020. Recent developments in remote inspections of ships structures, International Journal of Naval Architect and Ocean Engineering, 12: 881–891.
  • [40] BV, 2025. Rules for the classification of steel ships, Paris, France.
  • [41] LR, 2024. Rules and regulations for the classification of ships, London, UK.
  • [42] Jurczak W., Jurczak K., 2016. Possibility of corrosion monitoring resistance of austenitic steel for ship construction. Journal of KONES Powertrain and Transport, Vol. 23, No. 1.
Uwagi
1. Pełne imiona podano na stronie internetowej czasopisma w "Authors in other databases."
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-daae1398-e3f4-48f3-b14c-af235eeb2cde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.