Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konstrukcyjne aspekty stosowania szkła w fasadach
Języki publikacji
Abstrakty
Glass is a unique structural material that combines transparency, aesthetics and mechanical performance, making it one of the most important components in contemporary façade engineering. This paper presents a comprehensive overview of the structural use of glass in façades, with a particular focus on its mechanical properties, product types, design methodologies and system applications. The study begins with a review of the physical and chemical characteristics of float glass, including its elastic and brittle behaviour, sensitivity to surface defects and strategies for strength enhancement – such as thermal tempering and chemical strengthening. Basic glass products such as laminated glass, insulating glass units and fire-resistant glass are also discussed. A significant portion of the article is dedicated to identifying and analysing common errors that occur at different stages of façade design, construction and maintenance. Examples include issues related to thermal movement, incorrect material selection, inadequate joint detailing and insufficient maintenance strategies, all of which may compromise façade integrity and user safety. The paper also explores advanced façade systems such as unitised modules, double-skin façades, closed cavity façades and long-span glazed façades supported by trusses, cables or glass fins. Case studies of notable architectural applications, including the Markthal in Rotterdam and the Sub-Center Library in Beijing, are used to illustrate current trends and engineering challenges. Finally, the article highlights the ongoing standardization efforts in structural glass design, including the forthcoming Eurocode 10, which aims to formalize glass as a structural material within the European regulatory framework.
Szkło to unikalny materiał konstrukcyjny, który łączy w sobie przezierność, walory estetyczne oraz właściwości mechaniczne, co czyni go jednym z najważniejszych komponentów we współczesnej inżynierii fasad. Artykuł przedstawia kompleksowy przegląd zastosowania szkła jako materiału konstrukcyjnego w elewacjach, ze szczególnym uwzględnieniem jego właściwości mechanicznych, typów wyrobów, metod projektowania oraz systemów fasadowych. W pierwszej części pracy omówiono fizykochemiczne właściwości szkła float, w tym jego zachowanie sprężyste i kruche, podatność na defekty powierzchniowe oraz strategie zwiększania wytrzymałości, takie jak hartowanie termiczne i wzmacnianie chemiczne. Opisano również podstawowe wyroby szklane: szkło laminowane, zespolone oraz ognioodporne. Znaczną część artykułu poświęcono analizie typowych błędów występujących na etapie projektowania, realizacji i eksploatacji elewacji. Przykłady te obejmują problemy związane z kompensacją przemieszczeń termicznych, nieprawidłowym doborem materiałów, błędami w projektowaniu połączeń oraz niewystarczającą konserwacją – wszystkie mogą prowadzić do uszkodzeń i zagrożeń dla bezpieczeństwa użytkowników. Omówiono również zaawansowane systemy elewacyjne, takie jak moduły elementowe, fasady dwupowłokowe, systemy z zamkniętą wnęką oraz fasady wielkoformatowe wspierane przez kratownice, cięgna lub żebra szklane. Przedstawiono studia przypadków, m.in. Markthal w Rotterdamie i Sub-Center Library w Pekinie, ilustrujące aktualne trendy i wyzwania inżynierskie. Na koniec omówiono prace nad standaryzacją projektowania szkła konstrukcyjnego, w tym nadchodzącą normę Eurokod 10, która ma ułatwić projektowanie konstrukcji szklanych w Europie.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
199--216
Opis fizyczny
Bibliogr. 66 poz., il.
Twórcy
autor
- Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Architecture, Warsaw, Poland
Bibliografia
- [1] M. Brzezicki, “Disturbance of transparency in the architecture of contemporary glass facades. Part 1”, Architectus, no. 1, pp. 77-84, 2021, doi: 10.37190/arc210109.
- [2] R. Kaplan, “The role of nature in the context of the workplace”, Landscape and Urban Planning, vol. 26, no. 1-, pp.193-201, 1993, doi: 10.1016/0169-2046(93)90016-7.
- [3] M. Nascimento, “Brief history of the flat glass patent-Sixty years of the float process”, World Patent Information, vol. 38, pp. 50-56, 2014, doi: 10.1016/j.wpi.2014.04.006.
- [4] W. Vogel, Ed. Glass chemistry. Berlin: Springer, 1994.
- [5] M. Haldimann, A. Luible, and M. Overend, Structural use of glass. Zurich: IABSE, 2008.
- [6] M. Kosmal, A. Kuśnierz, and M. Kozłowski, Szkło budowlane (Construction glass). Warsaw: PWN, 2022 (in Polish).
- [7] R. Zanini, G. Franceschin, E. Cattaruzza, and A. Traviglia, “A review of glass corrosion: the unique contribution of studying ancient glass tovalidate glass alteration models”, Materials Degradation, vol. 7, no. 7, pp. 1-17, 2023, doi: 10.1038/s41529-023-00355-4.
- [8] S.V. Solinov, Mechanical properties of a glass. The technology of glass: handbook. Moscow: University of Chemical Technology of Russia, 2012.
- [9] F.A. Veer and Y.M. Rodichev, “The structural strength of glass: hidden damage”, Strength of Materials, vol. 43, pp. 302-315, 2011, doi: 10.1007/s11223-011-9298-5.
- [10] A.A. Griffith, “The phenomena of rupture and flow in solids”, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 221, no. 582-593, pp. 163-198, 1921, doi: 10.1098/rsta.1921.0006.
- [11] M. Cwyl and E. Modzelewska, “Analiza nośności wybranych typów tafli szklanych na podstawie badań laboratoryjnych oraz uproszczonych metod obliczeniowych”, Przegląd Budowlany, no. 5, pp. 25-31, 2019.
- [12] C. Bedon, “Structural glass systems under fire: Overview of design issues, experimental research, and developments”, Advances in Civil Engineering, vol. 2017, art. no. 2120570, 2017, doi: 10.1155/2017/2120570.
- [13] A. Luible, “Lasteinleitungsversuche in Glaskanten”, Report ICOM 463, Ecole Polytechnique Fédérale de Lausanne, 2004.
- [14] EN 16612:2019 Glass in building – Determination of the lateral load resistance of glass panes by calculation. CEN, 2019.
- [15] S. Karlsson, “Spontaneous fracture in thermally strengthened glass-a review and outlook”, Ceramics-Silikáty, vol. 61, no. 3, pp. 188-201, 2017, doi: 10.13168/cs.2017.0016.
- [16] M. Kozłowski, Balustrady szklane: Analizy doświadczalne i obliczeniowe, podstawy projektowania (Glass balustrades: Experimental and numerical analysis, basis of design). Gliwice: Wydawnictwo Politechniki Śląskiej, 2018 (in Polish).
- [17] C. Bedon, M. Kozłowski, and N. Cella, “Gaps in the post-breakage out-of-plane bending stiffness assessment of 2-ply partially damaged laminated glass elements under short-term quasi-static loads”, Engineering Structures, vol. 327, art. no. 119617, 2025, doi: 10.1016/j.engstruct.2025.119617.
- [18] Morn Glass. [Online]. Available: https://www.mornglass.com/northglass-produced-23m-world-record-sgp-laminated-glass.html. [Accessed: 10 Apr. 2025].
- [19] K. Datsiou, “Design and Performance of Cold Bent Glass”, Ph.D. thesis, University of Cambridge, UK, 2017, doi: 10.17863/CAM.15628.
- [20] H. Hohenstein, “Curved and 3D glass. The new hype in top end architecture – an examination of latest product developments and projects”, in Glass Performance Days 2019, 26-28 June 2019, Tampere, Finland. Tampere: Glass Performance Days, 2019, pp. 1-6.
- [21] N. Schlösser, “Quality control and specification for distortions of curved glass”, in Glass Performance Days 2019, 26-28 June 2019, Tampere, Finland. Tampere: Glass Performance Days, 2019, pp. 1-6.
- [22] Z. Respondek, “Influence of insulated glass units thickness and weight reduction on their functional properties”, Open Engineering, vol. 8, no. 1, pp. 455-462, 2018, doi: 10.1515/eng-2018-0056.
- [23] Z. Respondek, M. Kozłowski, and M. Wiśniowski, “Deflections and Stresses in Rectangular, Circular and Elliptical Insulating Glass Units”, Materials, vol. 15, no. 7, art. no. 2427, 2022, doi: 10.3390/ma15072427.
- [24] C. Louter, C. Bedon, M. Kozłowski, and A. Nussbaumer, “Structural response of fire-exposed laminated glass beams under sustained loads; exploratory experiments and FE-Simulations”, Fire Safety Journal, vol. 123, art. no. 103353, 2021, doi: 10.1016/j.firesaf.2021.103353.
- [25] A. Seweryn and J.M. Franssen, Comparative study of glass products used in facades and their behaviour in fire, in 4th International Symposium on Fire Safety of Facades FSF 2024, 10-12 June 2024, Lund, Sweden, R. McNamee and J. Anderson, Eds. Lund: RISE Rapport, 2024, pp. 230-238.
- [26] Office Market Pulse, „Raport z rynku biurowego lipiec-wrzesień 2023”. [Online]. Available: https://www.brookfield.pl/wp-content/uploads/2023/10/OFFICE-MARKET-PULSE-III-kw.-23.pdf. [Accessed: 2 Apr. 2025].
- [27] MarketHub. https://markethub.pl/tag/rynek-szkla-w-polsce/. [Accessed: 2 Apr. 2025].
- [28] M. Overend, “Glass in facades and other applications”, in Structural design of buildings: Elemental design, F. Fu and D. Richardson, Eds. Leeds: Emerald Publishing, 2024, pp. 177-212.
- [29] D. Cichy, P. Drewniak, and M. Cwyl, “Wpływ oddziaływań termicznych na fasady metalowo-szklane (Impact of thermal actions on metal-glass facades)”, Świat Szkła, no. 7/8, pp. 16-19, 2017 (in Polish).
- [30] G. Jemielita, “Metoda dystrybucyjna znajdywania ugięć płyt prostokątnych dowolnie obciążonych (Distributive method for finding deflections of arbitrarily loaded rectangular plates)”, Archiwum Inżynierii Lądowej, vol. 20, no. 1, pp. 35-46, 1974 (in Polish). Compare: Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 20, pp. 385-391, 1972.
- [31] M. Cwyl and R. Michalczyk, “Aktualne problemy badawcze metalowo-szklane struktur elewacyjnych (Current research problems of metal-glass facade structures)”, Inżynieria i Budownictwo, vol. 77, no. 1/2, pp. 41-46, 2021 (in Polish).
- [32] Z. Respondek and K. Chęciński, “Design and assembly errors in the realization of post-and-beam glass facades”, Construction of Optimized Energy Potential, vol. 9, no. 2, pp. 71-78, 2020, doi: 10.17512/bozpe.2020.2.08.
- [33] D. Honfi, A. Reith, L.G. Vigh, and G. Stocker, “Why glass structures fail? - Learning from failures of glass structures”, in Challenging Glass 4 & COST Action TU0905 Final Conference, C. Louter, F. Bos, J. Belis, and J.-P. Lebet, Eds. Boca Raton: CRC Press, 2015, pp. 791-800.
- [34] M. Kozłowski, D. Wasik, and M. Cwyl, “Experimental studies on metal-glass point connections with various configurations of mesh reinforcement”, Archives of Civil Engineering, vol. 70, no. 3, pp. 71-84, 2024, doi: 10.24425/ace.2024.150971.
- [35] M. Cwyl, R. Michalczyk, N. Grzegorzewska, and A. Garbacz, “Predicting performance of aluminum-glass composite facade systems based on mechanical properties of the connection”, Periodica Polytechnica Civil Engineering, vol. 62, no. 1, pp. 259-266, 2018, doi: 10.3311/PPci.9988.
- [36] Dz.U. 2002 nr 75 poz. 690 Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie.
- [37] PN-EN 13501-2:2016 Fire classification of construction products and building elements – Part 2: Classification using data from fire resistance tests, excluding ventilation services. PKN, 2016.
- [38] J.L. Aguilar-Santana, H. Jarimi, M. Velasco-Carrasco, and S. Riffat, “Review on window-glazing technologies and future prospects”, International Journal of Low-Carbon Technologies, vol. 15, no. 1, pp. 112-120, 2020, doi: 10.1093/ijlct/ctz032.
- [39] M. Michael, F. Favoino, Q. Jin, A. Luna-Navarro, and M. Overend, “A Systematic Review and Classification of Glazing Technologies for Building Façades”, Energies, vol. 16, no. 14, art. no. 5357, 2023, doi: 10.3390/en16145357.
- [40] U. Risle, “The rise of thin triple insulating glass units: An industry game-changer”. [Online]. Available: https://www.glastory.net/the-rise-of-thin-triple-insulating-glass-units/. [Accessed: 1 May 2025].
- [41] A. Ghaffarianhoseini, U. Berardi, J. Tookey, D.H.W. Li, and S. Kariminia, “Exploring the advantages and challenges of double-skin facades”, Renewable and Sustainable Energy Reviews, vol. 60, pp. 1052-1065, 2016, doi: 10.1016/j.rser.2016.01.130.
- [42] A.M. Memari, R. Solnosky, and C. Hu, “Multi-disciplinary characteristics of double-skin facades for computational modeling perspective and practical design considerations”, Buildings, vol. 12, no. 10, art. no. 1576, 2022, doi: 10.3390/buildings12101576.
- [43] E. Oesterle, Double-skin facades: Integrated planning. Munich: Prestel Pub, 2001.
- [44] A. Zani, C. Galante, and L. Rammig, “Thermal performance of closed cavity facades”, in Proceedings of Façade Tectonics 2020 World Congress, 5-27 August 2020, D. Noble, et al., Eds. Los Angeles: Tectonic Press, 2020, pp. 600-616.
- [45] M. Michael and M. Overend, “Closed cavity façade, an innovative energy saving facade”, Building Services Engineering Research and Technology, vol. 43, no. 3, pp. 279-296, 2022, doi: 10.1177/01436244221080030.
- [46] V. Di Naso, C. Ciacci, and F. Bazzocchi, “Glass facade”, in Sustainable building development of low energy and eco-friendly constructions, A. Krawczyk, Ed. Bialystok: Bialystok University of Technology, 2022, pp. 137-176, doi: 10.24427/978-83-67185-24-0_6.
- [47] K. Kuliński and P. Palacz, “Comparison of Internal Forces Redistribution and Displacements Subjected to the Dynamic Wind Gusts depending of Point Fixed Glass Connector Model Shape”, Periodica Polytechnica Civil Engineering, vol. 65, no. 4, pp. 1008-1014, 2021, doi: 10.3311/PPci.18376.
- [48] M. Gargallo Sanz de Vicuňa, “A Systematic Approach for Unitized Curtain Walls Design”, Ph.D. thesis, Internacional Universidad Politécnica de Madrid, Madrid, Espania, 2021.
- [49] M. Patterson, G.G. Schierle, M.E. Schiler, and D. Noble, “Skin and Bones: Structural System Choices for Long Span Glass Facades”, in ACSA Annual Conference Proceedings – Association of Collegiate Schools of Architecture Conference. Houston, 27-30 March, 2008.
- [50] C. Bedon, X. Zhang, F. Santos, D. Honfi, M. Kozłowski, M. Arrigoni, L. Figuli, and D. Lange, “Performance of structural glass facades under extreme loads-Design methods, existing research, current issues and trends”, Construction and Building Materials, vol. 163, pp. 921-937, 2018, doi: 10.1016/j.conbuildmat.2017.12.153.
- [51] W. Laufs and A. Cersosimo, “Extreme glazing load case studies: Hurricane and bomb blast”, presented at Conference GlassCon Global, Chicago, 5-7 September, 2018.
- [52] M. Patterson, Structural glass facades and enclosures. Hoboken: John Wiley & Sons, 2011.
- [53] C. Stutzki and J. Knowles, “Transparency with cable net walls”, in Proceedings of IASS Annual Symposia, IASS 2018 Boston Symposium: Tension and membrane structures, 16-20 July 2018, Boston, USA, Madrid: International Association for Shell and Spatial Structures (IASS), 2018, pp. 1-8.
- [54] V. Komlev and J. Machacek, “Analysis of cable-net systems for glass facades”, in Proceedings of the 29th International Conference, Milovy, Czech Republic, 9-11 May, 2023, V. Radolf and I. Zolotarev Eds. Prague: Institute of Thermomechanics of the Czech Academy of Sciences, 2023, pp. 123-126.
- [55] M. Eekhout and P. van de Rotten, “Cable stayed facade in the market hall–Rotterdam”, in Challenging Glass 4 & COST Action TU0905 Final Conference, C. Louter, F. Bos, J. Belis, and J.-P. Lebet, Eds. Boca Raton: CRC Press, 2015, pp. 577-584.
- [56] A. Jóźwik, “The use of structural glass in shaping glazed facades”, Teka Komisji Urbanistyki i Architektury Oddział PAN w Krakowie, vol. 51, pp. 359-384, 2023, doi: 10.24425/tkuia.2023.148983.
- [57] A. Jóźwik, “Introduction to structural design of glass naccording to current European standards”, Archives of Civil Engineering, vol. 68, no. 2, pp. 147-170, 2022, doi: 10.24425/ace.2022.140634.
- [58] C. Bedon and M. Santarsiero, “Transparency in structural glass systems via mechanical, adhesive, and laminated connections – existing research and developments”, Advanced Engineering Materials, vol. 20, no. 5, art. no. 1700815, pp. 1-18, 2018, doi: 10.1002/adem.201700815.
- [59] A. Wagner, “320 S Canal Street |Chicago”, in Glasbau 2022, B. Weller and T. Silke, Eds. Berlin: Ernst & Sohn, 2022, pp. 68-78.
- [60] Glass For Europe. [Online]. Available: https://glassforeurope.com/the-sector/key-data/. [Accessed: 10 Apr. 2025].
- [61] M. Feldmann, et al., “The new CEN/TS 19100: Design of glass structures”, Glass Structures & Engineering, vol. 8, no. 3, pp. 317-337, 2023, doi: 10.1007/s40940-023-00219-y.
- [62] prEN 19100-1:2024 Eurocode 10 – Design of glass structures – Part 1: General rules. CEN 2024.
- [63] prEN 19100-2:2024 Eurocode 10 – Design of glass structures – Part 2: Out-of plane loaded glass components. CEN 2024.
- [64] prEN 19100-3:2024 Eurocode 10 – Design of glass structures – Part 3: In-plane loaded glass components. CEN 2024.
- [65] S. Bianchi, C. Andriotis, T. Klein, and M. Overend, “Multi-criteria design methods in facade engineering: State-of-the-art and future trends”, Building and Environment, vol. 250, art. no. 111184, 2024, doi: 10.1016/j.buildenv.2024.111184.
- [66] R. Hartwell and M. Overend, “Unlocking the re-use potential of glass facade systems”, in Glass Performance Days 2019, 26-28 June 2019, Tampere, Finland. Tampere: Glass Performance Days, 2019, pp. 273-280.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-daa7e595-254b-45fd-8034-bd3cfedae065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.