PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Protective Disposable Face Masks Used During the COVID-19 Pandemic as a Source of Pollutants in the Aquatic Environment – A Study of Short-Term Effects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper examines the impact of protective equipment used during the COVID-19 pandemic on the environment. The impact of protective face masks on the aquatic environment was analyzed in more detailed way. The amount of protective face masks penetrated into the environment as a result of the COVID-19 pandemic and their role in the increase of plastic and microplastic things in the environment was noted. The aim of the work was to study the migration of a number of metals from disposable protective masks into the aquatic environment in the short term. Using the method of atomic absorption spectroscopy, the value of Cu, Pb, Mn, Zn, Fe in the investigated model systems containing protective disposable face masks was obtained by varying the pH of the aqueous medium. It was found that for manganese, lead and iron there is a permanent (Mn) or temporary (Pb, Fe) excess of these metals in the aquatic environment according to national and European standards. The probable possibility of sorption effects and the need for further research in this direction were noted.
Twórcy
  • Department of Civil Security, Lutsk National Technical University, Lvivska Str., 75, 43018, Lutsk, Ukraine
  • Water Research Institute, Nábr. arm. gen. L. Svobodu, 5, 81249, Bratislava, Slovakia
  • Chemical Metrology Department, V.N. Karazin Kharkiv National University, Svobody Sq., 4, 61022, Kharkiv, Ukraine
  • Department of Automatic Safety Systems and Information Technologies, National University of Civil Defence of Ukraine, Chernyshevska Str., 94, 61023, Kharkiv, Ukraine
  • Ministry of Defence of Ukraine, Povitroflotskyi Av., 6, 03168, Kyiv, Ukraine
  • Scientific Department on Problems of Civil Defense and Technogenic and Ecological Safety, National University of Civil Defenсe of Ukraine, Chernyshevskaya Str., 94, 61023, Kharkiv, Ukraine
  • The National Defence University of Ukraine named after Ivan Cherniakhovskyi, Povitroflotskyi Av., 28, 03049, Kyiv, Ukraine
  • Kharkiv State Academy of Design and Arts, Mystetstv Str., 8, 61002, Kharkiv, Ukraine
autor
  • Scientific Department on Problems of Civil Defense and Technogenic and Ecological Safety, National University of Civil Defenсe of Ukraine, Chernyshevskaya Str., 94, 61023, Kharkiv, Ukraine
  • Department of Service and Training, National University of Civil Defence of Ukraine, Chernyshevska Str., 94, 61023, Kharkiv, Ukraine
Bibliografia
  • 1. Abramov Y., Basmanov O., Salamov J., Mikhayluk A., Yashchenko O. 2019. Developing a model of tank cooling by water jets from hydraulic monitors under conditions of fire. Eastern-Euroean Journal of Enterprise Technologies, 1(10–97), 14–20. https://doi.org/10.15587/1729-4061.2019.154669
  • 2. Akhbarizadeh R., Dobaradaran S., Nabipour I., Tangestani M., Abedi D., Javanfekr F., Jeddi F., Zendehboodi A. 2021.Abandoned Covid-19 personal protective equipment along the Bushehr shores, the Persian Gulf: An emerging source of secondary microplastics in coastlines. Marine Pollution Bulletin, 168, 112386. https://doi.org/10.1016/j.marpolbul.2021.112386
  • 3. Alieva T., Ayvazi N., Patonia A. 2021. Waste and Water Management in the Time of COVID-19: A Tale of Six Countries. EaP CSF COVID-19 POLICY PAPER. PrepareEaP4Health. Eastern Partnership Civil Society Forum. https://eap-csf.eu/wp-content/uploads/Waste-and-Water-Management-in-the-Time-of-the-COVID-19.pdf
  • 4. Alcaraz J.P., Le Coq L., Pourchez J., Thomas D., Chazelet S., Boudry I., Barbado M., Silvent S., Dessale C., Antoine F., Guimier-Pingault C., Cortella L., Rouif S., Bardin-Monnier N., Charvet A., Dufaud O., Leclerc L., Montigaud Y., Laurent C., Verhoeven P., Joubert A., Bouhanguel A., Andres Y., Gaffé J., Martin D.K., Huet C., Boisset S., Maurin M., Rumeau P., Charlot F., Richaud E., Moreau-Gaudry A., Bonneterre V., Cinquin P., Landelle C. 2022. Reuse of medical face masks in domestic and community settings without sacrificing safety: Ecological and economical lessons from the Covid-19 pandemic. Chemosphere, 288(Pt 1), 132364. https://doi.org/10.1016/j.chemosphere.2021.132364
  • 5. Ammendolia J., Saturno J., Brooks A.L., Jacobs S., Jambeck J.R. 2021. An emerging source of plastic pollution: Environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city. Environ Pollut., 69, 116160. DOI: 10.1016/j.envpol.2020.116160
  • 6. Babaahmadi V., Amid H., Naeimirad M., Ramakrishna, S. 2021. Biodegradable and multifunctional surgical face masks: A brief review on demands during COVID-19 pandemic, recent developments, and future perspectives. The Science of the total environment, 798, 149233. https://doi.org/10.1016/j.scitotenv.2021.149233
  • 7. Bussan D.D., Snaychuk L., Bartzas G., Douvris C. 2022. Quantification of trace elements in surgical and KN95 face masks widely used during the SARS-COVID-19 pandemic. The Science of the total environment, 814, 151924. https://doi.org/10.1016/j.scitotenv.2021.151924
  • 8. Chen X., Chen X., Liu Q., Zhao Q., Xiong X., Wu C. 2021. Used disposable face masks are significant sources of microplastics to environment. Environmental pollution (Barking, Essex: 1987), 285, 117485. https://doi.org/10.1016/j.envpol.2021.117485
  • 9. Chen Z., Zhang W., Yang H., Min K., Jiang J., Lu D., Huang X., Qu G., Liu Q., Jiang G. 2022. A pandemic-induced environmental dilemma of disposable masks: solutions from the perspective of the life cycle. Environ Sci Process Impacts, 24, 649-674. https://doi.org/10.1039/d1em00509j
  • 10. De Felice B., Antenucci S., Ortenzi M. A., Parolini M. 2022. Laundering of face masks represents an additional source of synthetic and natural microfibers to aquatic ecosystems. The Science of the total environment, 806(1), 150495. https://doi.org/10.1016/j.scitotenv.2021.150495
  • 11. Dharmaraj S., Ashokkumar V., Hariharan S., Manibharathi A., Show P. L., Chong C. T., Ngamcharussrivichai C. 2021. The COVID-19 pandemic face mask waste: A blooming threat to the marine environment. Chemosphere, 272, 129601. https://doi.org/10.1016/j.chemosphere.2021.129601.
  • 12. Dickerson S., Cannon M., O’Neill B. 2022. Climate change risks to human development in sub-Saharan Africa: a review of the literature, Climate and Development, 14(6), 571-589. https://doi.org/10.1080/17565529.2021.1951644
  • 13. Divizinyuk M., Kasatkina N., Melnyk B. 2019. The Use of Electrical Monitoring and Surveillance Systems to Prevent Emergencies of a Terrorist Nature (on the Example of Motor Vehicles), 2019 IEEE 20th International Conference on Computational Problems of Electrical Engineering (CPEE), 1-4. https://doi.org/10.1109/CPEE47179.2019.8949101
  • 14. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (recast) (Text with EEA relevance). 2020. https://eur-lex.europa.eu/eli/dir/2020/2184/oj.
  • 15. DSanPiN 2.2.4–171–10. 2010. Hygienic requirements for drinking water intended for human consumption. Order of the Ministry of Health Protection of Ukraine dated 12.05.2010 No. 400. URL: https://zakon.rada.gov.ua/laws/show/z0452–10#Text (in Ukrainian).
  • 16. Du H., Huang S., Wang J. 2022. Environmental risks of polymer materials from disposable face masks linked to the COVID-19 pandemic. The Science of the total environment, 815, 152980. https://doi.org/10.1016/j.scitotenv.2022.152980
  • 17. Han J., Yin J., Wu X., Wang D., Li C. 2023. Environment and COVID-19 incidence: A critical review. Journal of Environmental Sciences (China), 124, 933–951. https://doi.org/10.1016/j.jes.2022.02.016
  • 18. Horta Ribeiro Antunes I.M., Brás A.F., Reis A.P.M. 2021. Surface Water and Contamination Sources in Urban River Watersheds (Northern Portugal). Ecological Engineering & Environmental Technology, 22(2), 67-74. https://doi.org/10.12912/27197050/133327
  • 19. Kutralam-Muniasamy G., Pérez-Guevara F., Shruti V.C. 2022. A critical synthesis of current peer-reviewed literature on the environmental and human health impacts of COVID-19 PPE litter: New findings and next steps. J Hazard Mater., 422, 126945. https://doi.org/10.1016/j.jhazmat.2021.126945
  • 20. Liang H., Ji Y., Ge W., Wu J., Song N., Yin Z., Chai C. 2022. Release kinetics of microplastics from disposable face masks into the aqueous environment. The Science of the total environment, 816, 151650. https://doi.org/10.1016/j.scitotenv.2021.151650
  • 21. Leonova, N., Loboichenko, V., Divizinyuk, M., Shevchenko, R. 2022. Study of Short-Term Effects on the Soil of Disposable Protective Face Masks Used in the COVID-19 Pandemic. KEM, 925, 197–210. https://doi.org/10.4028/p-zjo35h
  • 22. Loboichenko V., Leonova N., Shevchenko R., Strelets V., Morozov A., Pruskyi A., Avramenko O., Bondarenko S. 2021. Spatiо-Temporal Study of the Ecological State of Water Bodies Located within the Detached Objects of the Urbanized Territory of Ukraine. Ecological Engineering & Environmental Technology, 22(6), 36-44. https://doi.org/10.12912/27197050/141610
  • 23. Liu Z., Wang J., Yang X., Huang Q., Zhu K., Sun Y., Van Hulle S., Jia H. 2022. Generation of environmental persistent free radicals (EPFRs) enhances ecotoxicological effects of the disposable face mask waste with the COVID-19 pandemic. Environmental pollution (Barking, Essex: 1987), 301, 119019. https://doi.org/10.1016/j.envpol.2022.119019
  • 24. Ma J., Chen F., Xu H., Jiang H., Liu J., Li P., Chen C. C., Pan K. 2021. Face masks as a source of nanoplastics and microplastics in the environment: Quantification, characterization, and potential for bioaccumulation. Environmental pollution (Barking, Essex: 1987), 288, 117748. https://doi.org/10.1016/j.envpol.2021.117748
  • 25. Mali H., Shah C., Raghunandan B.H., Prajapati A.S., Patel D.H., Trivedi U., Subramanian R.B. 2023. Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. Journal of Environmental Sciences, 127, 234-250. https://doi.org/10.1016/j.jes.2022.04.023
  • 26. Norris J. 2021. COVID-19: Research unmasks the environmental impact of PPE. Medical news today. https://www.medicalnewstoday.com/articles/covid-19-research-unmasks-the-environmentalimpact-of-ppe.
  • 27. Patrício Silva A.L., Prata J.C., Duarte A.C., Barcelò D., Rocha-Santos T. 2021a..An urgent call to think globally and act locally on landfill disposable plastics under and after covid-19 pandemic: Pollution prevention and technological (Bio) remediation solutions. Chemical Engineering Journal, 426,131201. https://doi.org/10.1016/j.cej.2021.131201
  • 28. Patrício Silva A.L., Prata J.C., Mouneyrac C., Barcelò D., Duarte A.C., Rocha-SantosT. 2021b. Risks of Covid-19 face masks to wildlife: Present and future research needs. The Science of the total environment, 792, 148505. https://doi.org/10.1016/j.scitotenv.2021.148505
  • 29. Patrício Silva A.L., Tubić A., Vujić M., Soares A. M.V.M., Duarte A.C., Barcelò D., Rocha-Santos T.2022. Implications of COVID-19 pandemic on environmental compartments: Is plastic pollution a major issue?, Journal of Hazardous Materials Advances, 5, 100041. https://doi.org/10.1016/j.hazadv.2021.100041
  • 30. Pizarro-Ortega C.I., Dioses-Salinas D.C., Fernández Severini M.D., Forero López A.D., Rimondino G.N., Benson N.U., Dobaradaran S., De-la-Torre G.E. 2022. Degradation of plastics associated with the COVID-19 pandemic. Marine pollution bulletin, 176, 113474. https://doi.org/10.1016/j.marpolbul.2022.113474
  • 31. Popovych V., Bosak P., Petlovanyi M., Telak O., Karabyn V., Pinder V. 2021. Environmental safety of phytogenic fields formation on coal mines tailings. News of the National Academy of Sciences of the Republic of Kazakhstan Series of geology and technical science, 2(446), 129–136.
  • 32. Rathinamoorthy R., Raja Balasaraswathi S. 2022. Impact of coronavirus pandemic litters on microfiber pollution—effect of personal protective equipment and disposable face masks. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-022-04462-8
  • 33. Rosegrant M.W., Wiebe K.D., Sulser T.B., Mason-D’Croz D., Willenbockel D. 2021. Climate change and agricultural development. In Agricultural development: New perspectives in a changing world, eds. Keijiro Otsuka and Shenggen Fan. Part Four: Emerging Challenges and Opportunities in Agricultural Development, Chapter 19, 629-660. Washington, DC: International Food Policy Research Institute (IFPRI). https://doi.org/10.2499/9780896293830_19
  • 34. Sendra M., Pereiro P., Yeste M.P., Novoa B., Figueras A. 2022. Surgical face masks as a source of emergent pollutants in aquatic systems: Analysis of their degradation product effects in Danio rerio through RNA-Seq. Journal of hazardous materials, 428, 128186. https://doi.org/10.1016/j.jhazmat.2021.128186
  • 35. Sesana E., Gagnon A.S., Ciantelli C., Cassar J.A., Hughes J.J. 2021. Climate change impacts on cultural heritage: A literature review. WIREs Clim. Change, 12, e710. https://doi.org/10.1002/wcc.710
  • 36. Shukla S., Khan R., Saxena A., Sekar S. 2022. Microplastics from face masks: A potential hazard post Covid-19 pandemic. Chemosphere, 302, 134805. https://doi.org/10.1016/j.chemosphere.2022.134805
  • 37. Strelets V.V., Loboichenko V.M., Leonova N.A., Shevchenko R.I., Strelets V.M., Pruskyi A.V., Avramenko O.V. 2021. Comparative assessment of environmental parameters of foaming agents based on synthetic hydrocarbon used for extinguishing the fires of oil and petroleum products. SOCAR Proceedings Special Issue, 2(2021), 001-010.
  • 38. Sullivan G.L., Delgado-Gallardo J., Watson T.M., Sarp S. 2021. An investigation into the leaching of micro and nano particles and chemical pollutants from disposable face masks - linked to the COVID-19 pandemic. Water research, 196, 117033. https://doi.org/10.1016/j.watres.2021.117033
  • 39. Tesfaldet Y.T., Ndeh N.T., Budnard J., Treeson P. 2022. Assessing face mask littering in urban environments and policy implications: The case of Bangkok. The Science of the total environment, 806(4), 150952. https://doi.org/10.1016/j.scitotenv.2021.150952
  • 40. Torre M., Kafritsa M.E., Anastasopoulou A. 2022. Cross-contamination by COVID-19 mask microfibers during microlitter analysis of marine biota. Marine Pollution Bulletin, 181, 113883. https://doi.org/10.1016/j.marpolbul.2022.113883
  • 41. Uddin M.A., Afroj S., Hasan T., Carr C., Novoselov K.S., Karim N. 2022. Environmental Impacts of Personal Protective Clothing Used to Combat COVID-19. Adv. Sustainable Syst., 6, 2100176. https://doi.org/10.1002/adsu.202100176
  • 42. Wang Z., An C., Chen X., Lee K., Zhang B., Feng Q. 2021. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. Journal of hazardous materials, 417, 126036. https://doi.org/10.1016/j.jhazmat.2021.126036
  • 43. Wang F., Wu H., Li J., Liu J., Xu Q., An L. 2022. Microfiber releasing into urban rivers from face masks during COVID-19. Journal of environmental management, 319, 115741. https://doi.org/10.1016/j.jenvman.2022.115741
  • 44. Weir D. 2020. How does war damage the environment? Conflict and Environment Observatory. https://ceobs.org/how-does-war-damage-the-environment/
  • 45. WHO. 2022. Guidelines for drinkingwater quality Fourth edition incorporating the first and second addenda. World Health Organization, 2022.
  • 46. Wu P., Li J., Lu X., Tang Y., Cai Z. 2022. Release of tens of thousands of microfibers from discarded face masks under simulated environmental conditions. Science of The Total Environment. 806(2), 150458. https://doi.org/10.1016/j.scitotenv.2021.150458
  • 47. Yang S., Cheng Y., Liu T. Huang S., Yin L., Pu Y., Liang G. 2022. Impact of waste of COVID-19 protective equipment on the environment, animals and human health: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-022-01462-5
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-daa54655-d1d0-4d0c-841a-366e36c88c2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.