PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic simulation of tibialis posterior tendon transfer in the treatment of drop-foot

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An extensive range of studies have been performed to describe kinematics and dynamics of human movements. However, the forces and moments generated by muscles are not measurable. Dynamic simulations are needed to estimate internal loading of the musculo-skeletal system, to establish scientific basis of treatment planning before performing the surgery, and to predict the functional consequences of treatments. In this study, an ankle joint model consisting of 30 bones and 12 muscles was generated by using lower extremity model of OpenSim software. Muscle insertion points were virtually re-defined for simulation of tendon transfer operation of tibialis posterior in treatment of drop foot deformity. Flexion and inversion moments of ankle, and moment arm distances of tibialis posterior before and after operation were investigated comparatively. Tibialis posterior provided the dorsal flexion moment up to 28 N m after transfer, while providing the plantar flexion moment of -14.5 N m before transfer. Moment arm distance became average 33 mm after transfer, while it is average -11 mm before transfer. These increases provided the active dorsal flexion as the treatment of drop foot.
Twórcy
autor
  • Sakarya University, Mechanical Engineering Department, Esentepe Campus, 54187 Adapazari, Sakarya, Turkey
Bibliografia
  • [1] Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 2007;54:1940–50. http://dx.doi.org/10.1109/TBME.2007.901024.
  • [2] De Marchi F, Malerba F, Alfieri UM, Ferrarin M, Rabuffetti M. Tibialis posterior tendon transfer through the interosseal membrane in paralysis of the common peroneal nerve. Foot Ankle Surg 2000;6:19–25. http://dx.doi.org/10.1046/j.1460-9584.2000.00184.x.
  • [3] Blaya JA, Herr H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE TransNeural Syst Rehabil Eng 2004;40:24–31. http://dx.doi.org/10.1109/TNSRE.2003.823266.
  • [4] Brand PW. The value of surgical and physiotherapeutic measures in leprosy. Lepr India 1955;27:131.
  • [5] Delp SL, Ringwelski D, Carroll NC. Transfer of the rectus femoris: effects of transfer site on moment arms about the knee and hip. J Biomech 1994;27:1201–11. http://dx.doi.org/10.1016/0021-9290(94)90274-7.
  • [6] Asakawa DS, Blemker SS, Gold GE, Delp SL. In vivo motion of the rectus femoris muscle after tendon transfer surgery. J Biomech 2002;35:1029–37. http://dx.doi.org/10.1016/S0021-9290(02)00048-9.
  • [7] Fox MD, Reinbolt JA, Qunpuu S, Delp SL. Mechanism of improved knee flexion after rectus femoris transfer surgery. J Biomech 2009;42:614–9. http://dx.doi.org/10.1016/j.jbiomech.2008.12.007.
  • [8] Reinbolt JA, Fox MD, Schwartz MH, Delp SL. Predicting outcomes of rectus femoris transfer surgery. Gait Posture 2009;30:100–5. http://dx.doi.org/10.1016/j.gaitpost.2009.03.008.
  • [9] Arnold AS, Liu MQ, Õunpuu S, Swartz MH, Delp SL. The role of estimating hamstrings lengths and velocities in planning treatments for crouch gait. Gait Posture 2006;23:273–81. http://dx.doi.org/10.1016/j.gaitpost.2005.03.003.
  • [10] Arnold AS, Liu MQ, Schwartz MH, Õunpuu S, Dias LS, Delp SL. Do the hamstrings operate at increased muscle-tendon lengths and velocities after surgical lengthening? J Biomech 2006;39:1498–506. http://dx.doi.org/10.1016/j.jbiomech.2005.03.026.
  • [11] Herrmann A, Delp SL. Moment arms and force-generating capacity of the extensor carpi ulnaris after transfer to the extensor carpi radialis brevis. J Hand Surg 1999;24A: 1083–90. http://dx.doi.org/10.1053/jhsu.1999.1083.
  • [12] Gousheh J, Arasteh E. Transfer of a single flexor carpi ulnaris tendon for treatment of radial nerve palsy. J Hand Surg 2006;31:542–6. http://dx.doi.org/10.1016/j.jhsb.2006.05.003.
  • [13] Kreulen M, Smeulders MJC. Assessment of flexor carpi ulnaris function for tendon transfer surgery. J Biomech 2008;41:2130–5. http://dx.doi.org/10.1016/j.jbiomech.2008.04.030.
  • [14] Hove LM, Nilsen PT. Posterior tibial tendon transfer for drop-foot. 20 cases followed for 1–5 years. Acta Orthop Scand 1998;69:608–10. http://dx.doi.org/10.3109/17453679808999265.
  • [15] Qian JG, Yan LB, Li WZ, Zhang GC. Posterior tibialis transfer for foot-drop due to leprosy: a case with 40 years follow up. Br J Plast Surg 2004;57:450–2. http://dx.doi.org/10.1016/j.bjps.2004.01.004.
  • [16] Vigasio A, Marcoccio I, Patelli A, Mattiuzzo V, Prestini G. New tendon transfer for correction of drop-foot in common peroneal nerve palsy. Clin Orthop Relat Res 2008;466: 1454–66. http://dx.doi.org/10.1007/s11999-008-0249-9.
  • [17] Shah RK. Tibialis posterior transfer by interosseous route for the correction of foot drop in leprosy. Int Orthop 2009;33:1637–40. http://dx.doi.org/10.1007/s00264-008-0704-y.
  • [18] Rath S, Schreuders TAR, Selles RW. Early postoperative active mobilisation versus immobilisation following tibialisposterior tendon transfer for foot-drop correction in patients with Hansen's disease. J Plast Reconstr Aesthet Surg 2010;63:554–60. http://dx.doi.org/10.1016/j.bjps.2008.11.095.
  • [19] Thermann H, Gavriilidis I, Longo UG, Maffulli N. Total ankle arthroplasty and tibialis posterior tendon transfer for ankle osteoarthritis and drop foot deformity. Foot Ankle Surg 2011;17:203–6. http://dx.doi.org/10.1016/j.fas.2009.10.004.
  • [20] Aydin A, Topal M, Tuncer K, Canbek U, Yildiz V, Kose M. Extramembranous transfer of the tibialis posterior tendon for the treatment of drop foot deformity in children. Arch Iran Med 2013;16(11):647–51.
  • [21] Das P, Kumar J, Karthikeyan G, Sundar Rao PSS. Peroneal strength as an indicator in selecting route of tibialis posterior transfer for foot drop correction in leprosy. Lepr Rev 2013;84:186–93.
  • [22] Andersen JS. Foot drop in leprosy and its surgical correction. Acta Orthop Scand 1963;33:151–71.
  • [23] Srinivasan H, Mukherjee SM, Subramaniam RA. Two-tailed transfer of tibialis posterior of correction of dropfoot in leprosy. J Bone Joint Surg Br 1968;50:623–8.
  • [24] Steinau HU, Tofaute A, Huellmann K, Goertz O, Lehnhardt M, Kammler J, et al. Tendon transfers for drop foot correction: long-term results including quality of life assessment, and dynamometric and pedobarographic measurements. Arch Orthop Trauma Surg 2011;131:903–10. http://dx.doi.org/10.1007/s00402-010-1231-z.
  • [25] Reis FJJ, Knackfuss IG, Verçosa N, Menezes S. The functional outcome of posterior tibial tendon transfer for foot drop in leprosy. The results of one to 5 years follow up. Lepr Rev 2009;80(2):219–20.
  • [26] Goh JC, Lee PY, Lee EH, Bose K. Biomechanical study on tibialis posterior tendon transfers. Clin Orthop Relat Res 1995;319:297–302.
  • [27] Yeap JS, Singh D, Birch R. A method for evaluating the results of tendon transfers for foot drop. Clin Orthop Relat Res 2001;383:208–13. http://dx.doi.org/10.1097/00003086-200102000-00024.
  • [28] Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng 1990;37:757–67. http://dx.doi.org/10.1109/10.102791.
  • [29] Reinbolt JA, Seth A, Delp SL. Simulation of human movement: applications using OpenSim. Procedia IUTAM 2011;2:186–98. http://dx.doi.org/10.1016/j.piutam.2011.04.019.
  • [30] Seth A, Sherman MA, Reinbolt JA, Delp SL. OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM 2011;2:212–32. http://dx.doi.org/10.1016/j.piutam.2011.04.021.
  • [31] Sherman MA, Seth A, Delp SL. Simbody: multibody dynamics for biomedical research. Procedia IUTAM 2011;2:241–61. http://dx.doi.org/10.1016/j.piutam.2011.04.023.
  • [32] Thelen DG, Anderson FC. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech 2006;39:1107–15. http://dx.doi.org/10.1016/j.jbiomech.2005.02.010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-daa38f3e-072f-40f3-9d38-45f7f304b3a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.