Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Rotary kiln is a device used on a large scale in the industry, including thermal waste treatment. Mathematical modeling of a rotary kiln consists most often of the development of several submodels occurring in the process phases, usually solid and gas, and linking them together. Most of the existing mathematical models describe the work of a rotary kiln co-incinerating waste, e.g. cement kilns, there is a lack of targeted, comprehensive models of the waste combustion process in structures only designed for this purpose, and therefore integrated with the vertical post-combustion chamber. The work presents a tabular list of models according to specific criteria that result of the method of dividing the process model into smaller elements. The conclusion from the analysis is the existence of many factors that require development in the form of a rotary kiln for the thermal treatment of waste.
Czasopismo
Rocznik
Tom
Strony
119--126
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- agata.wajda@polsl.pl
- Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki Katedra Technologii i Urządzeń Zagospodarowania Odpadów ul. Konarskiego 18, Gliwice 44-100, Poland; tel.: +48 32 237 13 21
autor
- Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki Katedra Technologii i Urządzeń Zagospodarowania Odpadów ul. Konarskiego 18, Gliwice 44-100, Poland; tel.: +48 32 237 13 21
Bibliografia
- [1] Duda J., Wasilewski M., Duczkowska-Kądziel A., Kierunki rozwoju konstrukcji cementowego pieca obrotowego, Logistyka 6/2014, p. 3295-3303.
- [2] Jelonek Z., Spalanie odpadów niebezpiecznych, Ekologia przem., 3/2008, p. 18-20;
- [3] Boateng A.A., Barr P.V., A thermal model for the rotary kiln including heat transfer within the bed, Int. J. Heat Mass Transf. 39 (10) (1996), p. 2131-2147.
- [4] Jaworski T., Problematyka modelowania matematycznego procesów termicznego przekształcania odpadów stałych, Piece przem. i kotły 1/2015, p. 8-14.
- [5] Gehrmann H.J., Mathematische Modellierung und experimentelle Untersuchungen zur Pyrolyse von Abfällen in Drehrohrsystemen, Dissertation PhD, Weimar 2005, p. 17-34.
- [6] Marias F., A model of a rotary kiln incinerator including solid and gaseous phase, Comput. Chem. Eng. 27 (2003), p. 813-825;
- [7] Granström B.R., Lundström T.S., Marjavaara B.D., Töyrä S., CFD modelling of the flow through a grate-kiln, Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 9-11 December 2009;
- [8] Karki E., Macphee J.E., Sellier M., Jeremy M., Tadulan E., CFD modelling of pulverized coal combustion in a rotary lime kiln, Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 9-11 December 2009;
- [9] Wang Q., Cao Q., Cui Z.,Sun Q., Cheng L., Numerical Simulation of an Improved Structure for High-Resistance Grate Plates, Energy Procedia 104 (2016), p. 407-412;
- [10] Kaddatz K.T., Rasul M.G., Rahman A., Alternative fuels in cement kilns: process impact modelling, Procedia Eng. 56 (2013), p. 413-420;
- [11] Mujumdar K.S., Ranade V.V., Simulation of rotary cement kiln using 1D model, Trans IChemE, Part A, March 2006, Chem. Eng. Res. Des., 84(A3), p. 165–177;
- [12] Mujumdar K.S., Ranade V.V., CFD modeling of rotary cement kiln, Asia-Pac. J. Chem. Eng. 2008; 3, p. 106–118;
- [13] Ariyaratne W.K.H., Malagalage A., Melaaen M.C., Tokheim L.-A., CFD modelling of meat and bone meal combustion in a rotary cement kiln, Int. J. of Model. and Optim., Vol. 4, No. 4, p. 263-272.
- [14] Ariyaratne W.K.H., Malagalage A., Melaaen M.C., Tokheim L.-A., CFD modelling of meat and bone meal combustion in a cement rotary kiln- Investigation of fuel particle size and fuel feeding position impacts, Chem. Eng. Sci. 123 (2015), p. 596–608;
- [15] Mastorakos E., Massias A., Tsakiroglou C.D., Goussis D.A., Burganos V.N., Payatakes A.C., CFD predictions for cement kilns including flame modelling, heat transfer and clinker chemistry, Appl. Math. Model. 23 (1999), p. 55-76;
- [16] Granados D.A., Chejne F., Mejia J.M., Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns, Appl. Energy 158 (2015), p. 107–117;
- [17] Yin H., Zhang M., Liu H., Numerical simulation of three-dimensional unsteady granular flows in rotary kiln, Powder Technol. 253 (2014), p. 138–145;
- [18] Gaurav G.K., Khanam S., Computational fluid dynamics of sponge iron rotary kiln, Case Stud. Therm. Eng. 9 (2017), p. 14–27;
- [19] Gaurav G.K., Khanam S., Analysis of temperature profile and % metallization in rotary kiln of sponge iron process through CFD, J. Taiwan Inst. Chem. Eng. 63 (2016), p. 473–481;
- [20] Vincent Meyer, Alexander Pisch, Karri Penttilä, Pertti Koukkari, Computation of steady state thermochemistry in rotary kilns: Application to the cement clinkermanufacturing process, Chemical Engineering Research and Design 115 (2016) 335-347;
- [21] J. Bujak, Determination of the optimal area of waste incineration in a rotary kiln using a simulation model, Waste Management 42 (2015) 148–158;
- [22] Ehab Hussein Bani-Hani, Mahmoud Hammad, Ali Matar, Ahmad Sedaghat, Khalil Khanafer, Numerical analysis of the incineration of polychlorinated biphenyl wastes in rotary kilns, Journal of Environmental Chemical Engineering 4 (2016) 624–632;
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da9e854a-be9f-4982-9bc9-3744d664dd44